The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Mesures invariantes pour les fractions rationnelles géométriquement finies

Guillaume Havard — 1999

Fundamenta Mathematicae

Let T be a geometrically finite rational map, p(T) its petal number and δ the Hausdorff dimension of its Julia set. We give a construction of the σ-finite and T-invariant measure equivalent to the δ-conformal measure. We prove that this measure is finite if and only if p ( T ) + 1 p ( T ) δ > 2 . Under this assumption and if T is parabolic, we prove that the only equilibrium states are convex combinations of the T-invariant probability and δ-masses at parabolic cycles.

Page 1

Download Results (CSV)