The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the signless Laplacian spectral characterization of the line graphs of T -shape trees

Guoping WangGuangquan GuoLi Min — 2014

Czechoslovak Mathematical Journal

A graph is determined by its signless Laplacian spectrum if no other non-isomorphic graph has the same signless Laplacian spectrum (simply G is D Q S ). Let T ( a , b , c ) denote the T -shape tree obtained by identifying the end vertices of three paths P a + 2 , P b + 2 and P c + 2 . We prove that its all line graphs ( T ( a , b , c ) ) except ( T ( t , t , 2 t + 1 ) ) ( t 1 ) are D Q S , and determine the graphs which have the same signless Laplacian spectrum as ( T ( t , t , 2 t + 1 ) ) . Let μ 1 ( G ) be the maximum signless Laplacian eigenvalue of the graph G . We give the limit of μ 1 ( ( T ( a , b , c ) ) ) , too.

Page 1

Download Results (CSV)