The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of our present note is to show the strength of the existence of an
equivalent analytic renorming of a Banach space, even compared to C∞-Fréchet smooth
renormings.
It was Haydon who first showed in [8] that C(K) spaces for K countable admit
an equivalent C∞-Fréchet smooth norm. Later, in [7] and [9] he introduced a large
clams of tree-like (uncountable) compacts K for which C(K) admits an equivalent
C∞-Fréchet smooth norm.
Recently, it was shown in [3] that C(K) spaces for K countable admit...
* Supported by grants: AV ĈR 101-95-02, GAĈR 201-94-0069 (Czech Republic) and NSERC 7926 (Canada).
It is shown that the dual unit ball BX∗ of a Banach space X∗
in its weak star topology is a uniform Eberlein compact if and only if X
admits a uniformly Gâteaux smooth norm and X is a subspace of a weakly
compactly generated space. The bidual unit ball BX∗∗ of a Banach space
X∗∗ in its weak star topology is a uniform Eberlein compact if and only if
X admits a weakly uniformly rotund norm....
It is proved that no convex and Fréchet differentiable function on c(w), whose derivative is locally uniformly continuous, attains its minimum at a unique point.
Download Results (CSV)