On interpretability in theories containing arithmetic. II.

Petr Hájek

Commentationes Mathematicae Universitatis Carolinae (1981)

  • Volume: 022, Issue: 4, page 667-688
  • ISSN: 0010-2628

How to cite

top

Hájek, Petr. "On interpretability in theories containing arithmetic. II.." Commentationes Mathematicae Universitatis Carolinae 022.4 (1981): 667-688. <http://eudml.org/doc/17141>.

@article{Hájek1981,
author = {Hájek, Petr},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Peano arithmetic; finitely axiomatizable conservative extension of PA with class variables},
language = {eng},
number = {4},
pages = {667-688},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On interpretability in theories containing arithmetic. II.},
url = {http://eudml.org/doc/17141},
volume = {022},
year = {1981},
}

TY - JOUR
AU - Hájek, Petr
TI - On interpretability in theories containing arithmetic. II.
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1981
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 022
IS - 4
SP - 667
EP - 688
LA - eng
KW - Peano arithmetic; finitely axiomatizable conservative extension of PA with class variables
UR - http://eudml.org/doc/17141
ER -

References

top
  1. S. FEFERMAN, Arithmetization of metamathematics in a general setting, Fund. Math. 49 (1960), 33-92. (1960) Zbl0095.24301MR0147397
  2. K. GÖDEL, The consistency of the axiom of choice etc., Princeton Univ. Press 1940. (1940) 
  3. D. GUASPARI, Partially conservative extensions of arithmetic, Trans. Amer. Math. Soc. 254 (1979), 47-68. (1979) Zbl0417.03030MR0539907
  4. D. GUASPARI R. SOLOVAY, Rosser sentences, Annals of Math. Log. 16 (1979), 81-99. (1979) MR0530432
  5. P. HÁJEK, On interpretability in set theories, Comment. Math. Univ. Carolinae 12 (1971), 73-79. (1971) MR0311470
  6. P. HÁJEK, On interpretability in set theories II, Comment. Math. Univ. Carolinae 13 (1972), 445-455. (1972) MR0323566
  7. M. HÁJKOVÁ P. HÁJEK, On interpretabillty in theories containing arithmetic, Fund. Math. 76 (1972), 131-137. (1972) MR0307897
  8. P. LINDSTRÖM, Some results on interpretability, Proc. 5th Scand. Log. Symp. Aalborg Univ. Press 1979. (1979) MR0606608
  9. J. R. SHOENFIELD, Mathematical logic, Addison-Wesley 1967. (1967) Zbl0155.01102MR0225631
  10. C. SMORYŃSKI, Fifty years of self-reference in arithmetic, to appear. MR0622365
  11. C. SMORYŃSKI, A ubiquitous fixed-point calculation, to appear. 
  12. C. SMORYŃSKI, Calculating self-referential statements: Guaspari sentences of first kind, to appear. 
  13. C. SMORYŃSKI, A short course in modal logic, handwritten notes. 
  14. R. SOLOVAY, Interpretability in set theories, in preparation. 
  15. R. SOLOVAY, Probability interpretations of modal logic, Israel J. of Math. 25 (1976), 287-304. (1976) MR0457153
  16. V. ŠVEJDAR, Degrees of interpretability, Comment. Math. Univ. Carolinae 19 (1978), 789-813. (1978) MR0518190
  17. A. TARSKI A. MOSTOWSKI R. M. ROBINSON, Undecidable theories, Horth-Holland Publ. Co. 1953. (1953) MR0058532
  18. P. VOPĚNKA P. HÁJEK, Existence of a generalized model of Gödel-Bernays set theory, Bull. Acad. Polon. Sci. 21 (1973), 1079-1086. (1973) MR0422024

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.