The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We will consider unital rings A with free additive group, and want to construct (in ZFC) for each natural number k a family of -free A-modules G which are separable as abelian groups with special decompositions. Recall that an A-module G is -free if every subset of size is contained in a free submodule (we will refine this in Definition 3.2); and it is separable as an abelian group if any finite subset of G is contained in a free direct summand of G. Despite the fact that such a module G is...
An -module has an almost trivial dual if there are no epimorphisms from to the free -module of countable infinite rank . For every natural number , we construct arbitrarily large separable -free -modules with almost trivial dual by means of Shelah’s Easy Black Box, which is a combinatorial principle provable in ZFC.
Download Results (CSV)