The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

k -free separable groups with prescribed endomorphism ring

Daniel HerdenHéctor Gabriel Salazar Pedroza — 2015

Fundamenta Mathematicae

We will consider unital rings A with free additive group, and want to construct (in ZFC) for each natural number k a family of k -free A-modules G which are separable as abelian groups with special decompositions. Recall that an A-module G is k -free if every subset of size < k is contained in a free submodule (we will refine this in Definition 3.2); and it is separable as an abelian group if any finite subset of G is contained in a free direct summand of G. Despite the fact that such a module G is...

Separable k -free modules with almost trivial dual

Daniel HerdenHéctor Gabriel Salazar Pedroza — 2016

Commentationes Mathematicae Universitatis Carolinae

An R -module M has an almost trivial dual if there are no epimorphisms from M to the free R -module of countable infinite rank R ( ω ) . For every natural number k > 1 , we construct arbitrarily large separable k -free R -modules with almost trivial dual by means of Shelah’s Easy Black Box, which is a combinatorial principle provable in ZFC.

Page 1

Download Results (CSV)