Centralisateurs des difféomorphismes de la demi-droite
Soit un difféomorphisme lisse de fixant seulement l’origine, et son centralisateur dans le groupe des difféomorphismes . Des résultat classiques de Kopell et Szekeres montrent que est toujours un groupe à un paramètre. En revanche, Sergeraert a construit un dont le centralisateur est réduit au groupe des itérés de . On présente ici le résultat principal de [] : peut en fait être un sous-groupe propre et non-dénombrable (donc dense) de .