The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On a converse inequality for maximal functions in Orlicz spaces

H. Kita — 1996

Studia Mathematica

Let Φ ( t ) = ʃ 0 t a ( s ) d s and Ψ ( t ) = ʃ 0 t b ( s ) d s , where a(s) is a positive continuous function such that ʃ 1 a ( s ) / s d s = and b(s) is quasi-increasing and l i m s b ( s ) = . Then the following statements for the Hardy-Littlewood maximal function Mf(x) are equivalent: (j) there exist positive constants c 1 and s 0 such that ʃ 1 s a ( t ) / t d t c 1 b ( c 1 s ) for all s s 0 ; (jj) there exist positive constants c 2 and c 3 such that ʃ 0 2 π Ψ ( ( c 2 ) / ( | | ) | ( x ) | ) d x c 3 + c 3 ʃ 0 2 π Φ ( 1 / ( | | ) ) M f ( x ) d x for all L 1 ( ) .

Page 1

Download Results (CSV)