On the discrepancy of coloring finite sets.
Various techniques are presented for constructing (p) sets which are not for all . The main result is that there is a (4) set in the dual of any compact abelian group which is not for all . Along the way to proving this, new constructions are given in dual groups in which constructions were already known of (p) not sets, for certain values of . The main new constructions in specific dual groups are: – there is a (2k) set which is not in for all , and , and in...
Page 1