Construction techniques for some thin sets in duals of compact abelian groups
Annales de l'institut Fourier (1986)
- Volume: 36, Issue: 3, page 137-166
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHajela, D. J.. "Construction techniques for some thin sets in duals of compact abelian groups." Annales de l'institut Fourier 36.3 (1986): 137-166. <http://eudml.org/doc/74721>.
@article{Hajela1986,
abstract = {Various techniques are presented for constructing $\Lambda $ (p) sets which are not $\Lambda (p+\epsilon )$ for all $\epsilon >0$. The main result is that there is a $\Lambda $ (4) set in the dual of any compact abelian group which is not $\Lambda (4+\epsilon )$ for all $\epsilon >0$. Along the way to proving this, new constructions are given in dual groups in which constructions were already known of $\Lambda $ (p) not $\Lambda (p+\epsilon )$ sets, for certain values of $p$. The main new constructions in specific dual groups are:– there is a $\Lambda $ (2k) set which is not $\Lambda (2k+\varepsilon )$ in $\{\bf Z\}(2)\oplus \{\bf Z\}(2)\oplus \cdots $ for all $2\le k$, $k\in \{\bf N\}$ and $\varepsilon >0$, and in $\{\bf Z\}(p)\oplus \{\bf Z\}(p)\oplus \cdots $ ($p$ a prime, $p>2$) for $2\le k< p$, $k\in \{\bf N\}$ and $\varepsilon >0$ (answering a question in J. Lopez and K. Ross, Marcel Dekker, 1975),– there is a $\Lambda $ (2k) set which is not $\Lambda (4k-4+\varepsilon )$ in $\{\bf Z\}(p^\{\infty \})$ for $2\le k$, $k\in \{\bf N\}$ and all $\epsilon >0.$It is also shown that random infinite integer sequences are $\Lambda $ (2k) but not $\Lambda (2k+\epsilon )$ for $2\le k$, $k\in \{\bf N\}$ and $\epsilon >0$.},
author = {Hajela, D. J.},
journal = {Annales de l'institut Fourier},
keywords = {thin sets; duals of compact abelian groups; random infinite integer sequences},
language = {eng},
number = {3},
pages = {137-166},
publisher = {Association des Annales de l'Institut Fourier},
title = {Construction techniques for some thin sets in duals of compact abelian groups},
url = {http://eudml.org/doc/74721},
volume = {36},
year = {1986},
}
TY - JOUR
AU - Hajela, D. J.
TI - Construction techniques for some thin sets in duals of compact abelian groups
JO - Annales de l'institut Fourier
PY - 1986
PB - Association des Annales de l'Institut Fourier
VL - 36
IS - 3
SP - 137
EP - 166
AB - Various techniques are presented for constructing $\Lambda $ (p) sets which are not $\Lambda (p+\epsilon )$ for all $\epsilon >0$. The main result is that there is a $\Lambda $ (4) set in the dual of any compact abelian group which is not $\Lambda (4+\epsilon )$ for all $\epsilon >0$. Along the way to proving this, new constructions are given in dual groups in which constructions were already known of $\Lambda $ (p) not $\Lambda (p+\epsilon )$ sets, for certain values of $p$. The main new constructions in specific dual groups are:– there is a $\Lambda $ (2k) set which is not $\Lambda (2k+\varepsilon )$ in ${\bf Z}(2)\oplus {\bf Z}(2)\oplus \cdots $ for all $2\le k$, $k\in {\bf N}$ and $\varepsilon >0$, and in ${\bf Z}(p)\oplus {\bf Z}(p)\oplus \cdots $ ($p$ a prime, $p>2$) for $2\le k< p$, $k\in {\bf N}$ and $\varepsilon >0$ (answering a question in J. Lopez and K. Ross, Marcel Dekker, 1975),– there is a $\Lambda $ (2k) set which is not $\Lambda (4k-4+\varepsilon )$ in ${\bf Z}(p^{\infty })$ for $2\le k$, $k\in {\bf N}$ and all $\epsilon >0.$It is also shown that random infinite integer sequences are $\Lambda $ (2k) but not $\Lambda (2k+\epsilon )$ for $2\le k$, $k\in {\bf N}$ and $\epsilon >0$.
LA - eng
KW - thin sets; duals of compact abelian groups; random infinite integer sequences
UR - http://eudml.org/doc/74721
ER -
References
top- [1] G. BACHELIS and S. EBENSTEIN, On Λ(p) sets, Pacific. J. Math., 54 (1974), 35-38. Zbl0304.43013MR52 #3887
- [2] G. BENKE, An Example in the Theory of Λ(p) Sets, Bollettino U.M.I., (5) 14-A (1977), 506-507. Zbl0369.42007MR57 #7038
- [3] B. BOLLOBAS, Graph Theory, An Introductory Course, Graduate Texts in Math., Vol. 63 (1979). Zbl0411.05032MR80j:05053
- [4] A. BONAMI, Etude des Coefficients de Fourier des fonctions de Lp(G), Ann. Inst. Fourier, Grenoble, 20, fasc. 2 (1970), 335-402. Zbl0195.42501MR44 #727
- [5] R. BOSE and S. CHOWLA, Theorems In The Additive Theory of Numbers, Comment. Math. Helv., 37 (1962/1963), 141-147. Zbl0109.03301MR26 #2418
- [6] R. EDWARDS, E. HEWITT and K. ROSS, Lacunarity for Compact Groups I, Indiana University Math. Journal, 21 (1972), 787-806. Zbl0221.43007MR45 #6981
- [7] P. ERDOS, Problems and Results in Additive Number Theory, Colloque sur la Théorie des Nombres, Bruxelles (1955), 127-137. Zbl0073.03102
- [8] P. ERDOS and A. RENYI, Additive Properties of Random Sequences of Positive Integers, Acta. Arith., 6 (1960), 83-110. Zbl0091.04401MR22 #10970
- [9] P. ERDOS and J. SPENCER, Probabilistic Methods in Combinatorics, Academic Press, 1974. Zbl0308.05001MR52 #2895
- [10] T. FIGIEL, J. LINDENSTRAUSS and V. MILMAN, The dimension of Almost Spherical Sections of Convex Bodies, Acta. Math., 139 (1977), 53-94. Zbl0375.52002MR56 #3618
- [11] C. GRAHAM and O.C. McGEHEE, Essays in Commutative Harmonic Analysis, Springer-Verlag, 1979. Zbl0439.43001MR81d:43001
- [12] R. GRAHAM, B. ROTHSCHILD and J. SPENCER, Ramsey Theory, Wiley Interscience, 1980. Zbl0455.05002MR82b:05001
- [13] H. HALBERSTAM and K. ROTH, Sequences, Oxford University Press, 1966. Zbl0141.04405MR35 #1565
- [14] G. HARDY, Ramanujan, Chelsea, 1959. Zbl0086.26202
- [15] G. HARDY and E. WRIGHT, An Introduction to the Theory of Numbers, Oxford, 1938. Zbl0020.29201JFM64.0093.03
- [16] S. KAKUTANI, On the Equivalence of Infinite Product Measures, Ann. of Math., 49 (1948), 214-224. Zbl0030.02303MR9,340e
- [17] J. KOLMOS, M. SULYOK and E. SZEMEREDI, Linear Problems in Combinatorial Number Theory, Acta. Math. Sci. Hungar., 26 (1975), 113-121. Zbl0303.10058MR51 #342
- [18] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces I, Springer-Verlag, 1977. Zbl0362.46013MR58 #17766
- [19] J. LOPEZ and K. ROSS, Sidon Sets, Marcel Dekker, 1975. Zbl0351.43008MR55 #13173
- [20] D. MUMFORD, Introduction to Algebraic Geometry, Harvard Lecture Notes, 1967.
- [21] J. ROTMAN, The Theory of Groups, Allyn - Bacon, 1973. Zbl0262.20001
- [22] W. RUDIN, Fourier Analysis on Groups, Interscience Publishers, 1962. Zbl0107.09603MR27 #2808
- [23] W. RUDIN, Trigonometric Series With Gaps, J. Math. Mech., 9 (1960), 203-227. Zbl0091.05802MR22 #6972
- [24] H. RYSER, Combinatorial Mathematics, Carus Mathematical Monographs 14, Mathematical Association of America, 1963. Zbl0112.24806MR27 #51
- [25] B.L. VAN DER WAERDEN, Modern Algebra, Ungar, 1953.
- [26] J.H. VAN LINT, Introduction to Coding Theory, Graduate Texts in Mathematics, 86, Springer-Verlag, 1980. Zbl0485.94015
- [27] A. ZYGMUND, Trigonometric Series, Cambridge University Press, 1959. Zbl0085.05601
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.