The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Remarks on spectral radius and Laplacian eigenvalues of a graph

Bo ZhouHan Hyuk Cho — 2005

Czechoslovak Mathematical Journal

Let G be a graph with n vertices, m edges and a vertex degree sequence ( d 1 , d 2 , , d n ) , where d 1 d 2 d n . The spectral radius and the largest Laplacian eigenvalue are denoted by ρ ( G ) and μ ( G ) , respectively. We determine the graphs with ρ ( G ) = d n - 1 2 + 2 m - n d n + ( d n + 1 ) 2 4 and the graphs with d n 1 and μ ( G ) = d n + 1 2 + i = 1 n d i ( d i - d n ) + d n - 1 2 2 . We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph.

Page 1

Download Results (CSV)