The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Regularity properties of the equilibrium distribution

Hans Wallin — 1965

Annales de l'institut Fourier

Soit F un sous-ensemble compact de R m ayant des points intérieurs et soit μ α F la distribution d’équilibre sur F de masse totale 1 par rapport au noyau r α - m avec 0 < α < 2 pour m 2 , et 0 < α < 1 pour m = 1 . La restriction de μ α F à l’intérieur de F est absolument continue et a pour densité f α F . On donne une formule explicite pour f α F et, pour une classe générale d’ensembles F , on démontre que f α F , définie en réalité sur un ensemble de mesure de Lebesgue nulle, croît comme la distance à la frontière F de F élevée à la puissance - α 2 , quand...

Rational interpolants with preassigned poles, theoretical aspects

Amiran AmbroladzeHans Wallin — 1999

Studia Mathematica

Let ⨍ be an analytic function on a compact subset K of the complex plane ℂ, and let r n ( z ) denote the rational function of degree n with poles at the points b n i i = 1 n and interpolating ⨍ at the points a n i i = 0 n . We investigate how these points should be chosen to guarantee the convergence of r n to ⨍ as n → ∞ for all functions ⨍ analytic on K. When K has no “holes” (see [8] and [3]), it is possible to choose the poles b n i i , n without limit points on K. In this paper we study the case of general compact sets K, when such a separation...

A Whitney extension theorem in L p and Besov spaces

Alf JonssonHans Wallin — 1978

Annales de l'institut Fourier

The classical Whitney extension theorem states that every function in Lip ( β , F ) , F R n , F closed, k < β k + 1 , k a non-negative integer, can be extended to a function in Lip ( β , R n ) . Her Lip ( β , F ) stands for the class of functions which on F have continuous partial derivatives up to order k satisfying certain Lipschitz conditions in the supremum norm. We formulate and prove a similar theorem in the L p -norm. The restrictions to R d , d < n , of the Bessel potential spaces in R n and the Besov or generalized Lipschitz spaces in...

Page 1

Download Results (CSV)