Regularity properties of the equilibrium distribution

Hans Wallin

Annales de l'institut Fourier (1965)

  • Volume: 15, Issue: 2, page 71-90
  • ISSN: 0373-0956

How to cite

top

Wallin, Hans. "Regularity properties of the equilibrium distribution." Annales de l'institut Fourier 15.2 (1965): 71-90. <http://eudml.org/doc/73888>.

@article{Wallin1965,
author = {Wallin, Hans},
journal = {Annales de l'institut Fourier},
keywords = {partial differential equations},
language = {eng},
number = {2},
pages = {71-90},
publisher = {Association des Annales de l'Institut Fourier},
title = {Regularity properties of the equilibrium distribution},
url = {http://eudml.org/doc/73888},
volume = {15},
year = {1965},
}

TY - JOUR
AU - Wallin, Hans
TI - Regularity properties of the equilibrium distribution
JO - Annales de l'institut Fourier
PY - 1965
PB - Association des Annales de l'Institut Fourier
VL - 15
IS - 2
SP - 71
EP - 90
LA - eng
KW - partial differential equations
UR - http://eudml.org/doc/73888
ER -

References

top
  1. [1] N. ARONSZAJN et K. T. SMITH, Theory of bessel potentials, Part I. Ann. Inst. Fourier Grenoble, 11, (1961), 385-475. Zbl0102.32401
  2. [2] A. BEURLING, Ensembles exceptionnels, Acta Math., 72, (1940), 1-13. Zbl0023.14204JFM66.0449.01
  3. [3] L. CARLESON, Removable singularities of continuous harmonic functions in Rm, Math. Scand., 12, (1963), 15-18. Zbl0141.30203
  4. [4] H. CARTAN et J. DENY, Le principe du maximum en théorie du potentiel et la notion de fonction surharmonique, Acta Sci. Math. Szeged, 12, (1950), 81-100. Zbl0038.26102
  5. [5] J. DENY, Sur les espaces de Dirichlet, Séminaire de théorie du potentiel (Paris), 1, N° 5, (1957), 14 pages. 
  6. [6] J. DENY, Sur la définition de l'énérgie en théorie du potentiel, Ann. Inst. Fourier, Grenoble, 2, (1950), 83-99. Zbl0042.33602
  7. [7] M. RIESZ, Intégrales de Riemann-Liouville et potentiels, Acta Sci. Math. Szeged, 9, (1938), 1-42. Zbl0018.40704JFM64.0476.03
  8. [8] L. SCHWARTZ, Théorie des distributions, II, Paris, (1951). Zbl0042.11405
  9. [9] M. TSUJI, On the boundary value of a harmonic function in space, Japanese J. of Math., 19, (1944), 111-137. Zbl0061.23001

NotesEmbed ?

top

You must be logged in to post comments.