Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Some logarithmic function spaces, entropy numbers, applications to spectral theory

Haroske Dorothee — 1998

AbstractIn [18] and [19] we have studied compact embeddings of weighted function spaces on ℝⁿ, i d : H q s ( w ( x ) , ) L ( ) , s>0, 1 < q ≤ p< ∞, s-n/q+n/p > 0, with, for example, w ( x ) = x α , α > 0, or w ( x ) = l o g β x , β > 0, and x = ( 2 + | x | ² ) 1 / 2 . We have determined the behaviour of their entropy numbers eₖ(id). Now we are interested in the limiting case 1/q = 1/p + s/n. Let w ( x ) = l o g β x , β > 0. Our results in [18] imply that id cannot be compact for any β > 0, but after replacing the target space Lₚ(ℝⁿ) by a “slightly” larger one, L ( l o g L ) - a ( ) , a > 0, the...

Traces of Besov spaces on fractal h-sets and dichotomy results

António M. CaetanoDorothee D. Haroske — 2015

Studia Mathematica

We study the existence of traces of Besov spaces on fractal h-sets Γ with a special focus on assumptions necessary for this existence; in other words, we present criteria for the non-existence of traces. In that sense our paper can be regarded as an extension of Bricchi (2004) and a continuation of Caetano (2013). Closely connected with the problem of existence of traces is the notion of dichotomy in function spaces: We can prove that-depending on the function space and the set Γ-there occurs an...

Embeddings of Besov-Morrey spaces on bounded domains

Dorothee D. HaroskeLeszek Skrzypczak — 2013

Studia Mathematica

We study embeddings of spaces of Besov-Morrey type, i d Ω : p , u , q s ( Ω ) p , u , q s ( Ω ) , where Ω d is a bounded domain, and obtain necessary and sufficient conditions for the continuity and compactness of i d Ω . This continues our earlier studies relating to the case of d . Moreover, we also characterise embeddings into the scale of L p spaces or into the space of bounded continuous functions.

Embeddings of doubling weighted Besov spaces

Dorothee D. HaroskePhilipp Skandera — 2014

Banach Center Publications

We study continuous embeddings of Besov spaces of type B p , q s ( , w ) , where s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞, and the weight w is doubling. This approach generalises recent results about embeddings of Muckenhoupt weighted Besov spaces. Our main argument relies on appropriate atomic decomposition techniques of such weighted spaces; here we benefit from earlier results by Bownik. In addition, we discuss some other related weight classes briefly and compare corresponding results.

Page 1

Download Results (CSV)