The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

Self-intersection of the relative dualizing sheaf on modular curves X 1 ( N )

Hartwig Mayer — 2014

Journal de Théorie des Nombres de Bordeaux

Let N be an odd and squarefree positive integer divisible by at least two relative prime integers bigger or equal than 4 . Our main theorem is an asymptotic formula solely in terms of N for the stable arithmetic self-intersection number of the relative dualizing sheaf for modular curves X 1 ( N ) / . From our main theorem we obtain an asymptotic formula for the stable Faltings height of the Jacobian J 1 ( N ) / of X 1 ( N ) / , and, for sufficiently large N , an effective version of Bogomolov’s conjecture for X 1 ( N ) / .

Page 1

Download Results (CSV)