The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Borel and Baire reducibility

Harvey Friedman — 2000

Fundamenta Mathematicae

We prove that a Borel equivalence relation is classifiable by countable structures if and only if it is Borel reducible to a countable level of the hereditarily countable sets. We also prove the following result which was originally claimed in [FS89]: the zero density ideal of sets of natural numbers is not classifiable by countable structures.

Expansions of o-minimal structures by sparse sets

Harvey FriedmanChris Miller — 2001

Fundamenta Mathematicae

Given an o-minimal expansion ℜ of the ordered additive group of real numbers and E ⊆ ℝ, we consider the extent to which basic metric and topological properties of subsets of ℝ definable in the expansion (ℜ,E) are inherited by the subsets of ℝ definable in certain expansions of (ℜ,E). In particular, suppose that f ( E m ) has no interior for each m ∈ ℕ and f : m definable in ℜ, and that every subset of ℝ definable in (ℜ,E) has interior or is nowhere dense. Then every subset of ℝ definable in (ℜ,(S)) has interior...

Three-quantifier sentences

Harvey M. Friedman — 2003

Fundamenta Mathematicae

We give a complete proof that all 3-quantifier sentences in the primitive notation of set theory (∈, =), are decided in ZFC, and in fact in a weak fragment of ZF without the power set axiom. We obtain information concerning witnesses of 2-quantifier formulas with one free variable. There is a 5-quantifier sentence that is not decided in ZFC (see [2]).

Page 1

Download Results (CSV)