On a certain construction of MS-algebras.
A number of new results that say how to transfer the entailment relation between two different finite generators of a quasi-variety of algebras is presented. As their consequence, a well-known result saying that dualisability of a quasi-variety is independent of the generating algebra is derived. The transferral of endodualisability is also considered and the results are illustrated by examples.
Results saying how to transfer the entailment in certain minimal and maximal ways and how to transfer strong dualisability between two different finite generators of a quasi-variety of algebras are presented. A new proof for a well-known result in the theory of natural dualities which says that strong dualisability of a quasi-variety is independent of the generating algebra is derived.
A simple triple construction of principal MS-algebras is given which is parallel to the construction of principal -algebras from principal triples presented by the third author in [Haviar, M.: Construction and affine completeness of principal p-algebras Tatra Mountains Math. 5 (1995), 217–228.]. It is shown that there exists a one-to-one correspondence between principal MS-algebras and principal MS-triples. Further, a triple construction of a class of decomposable MS-algebras that includes the...
Page 1