The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An approximate number is an ordered pair consisting of a (real)
number and an error bound, briefly error, which is a (real) non-negative
number. To compute with approximate numbers the arithmetic operations
on errors should be well-known. To model computations with errors one
should suitably define and study arithmetic operations and order relations
over the set of non-negative numbers. In this work we discuss the algebraic
properties of non-negative numbers starting from familiar properties of...
Download Results (CSV)