The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

A new practical linear space algorithm for the longest common subsequence problem

Heiko GoemanMichael Clausen — 2002

Kybernetika

This paper deals with a new practical method for solving the longest common subsequence (LCS) problem. Given two strings of lengths m and n , n m , on an alphabet of size s , we first present an algorithm which determines the length p of an LCS in O ( n s + min { m p , p ( n - p ) } ) time and O ( n s ) space. This result has been achieved before [ric94,ric95], but our algorithm is significantly faster than previous methods. We also provide a second algorithm which generates an LCS in O ( n s + min { m p , m log m + p ( n - p ) } ) time while preserving the linear space bound, thus solving...

Page 1

Download Results (CSV)