The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Power-free values, large deviations, and integer points on irrational curves

Harald A. Helfgott — 2007

Journal de Théorie des Nombres de Bordeaux

Let f [ x ] be a polynomial of degree d 3 without roots of multiplicity d or ( d - 1 ) . Erdős conjectured that, if f satisfies the necessary local conditions, then f ( p ) is free of ( d - 1 ) th powers for infinitely many primes p . This is proved here for all f with sufficiently high entropy. The proof serves to demonstrate two innovations: a strong repulsion principle for integer points on curves of positive genus, and a number-theoretical analogue of Sanov’s theorem from the theory of large deviations.

Page 1

Download Results (CSV)