Enumeration of tilings of diamonds and hexagons with defects.
Let be a polynomial of degree without roots of multiplicity or . Erdős conjectured that, if satisfies the necessary local conditions, then is free of th powers for infinitely many primes . This is proved here for all with sufficiently high entropy. The proof serves to demonstrate two innovations: a strong repulsion principle for integer points on curves of positive genus, and a number-theoretical analogue of Sanov’s theorem from the theory of large deviations.
Page 1