The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Pseudo-immersions

Henri JorisEmmanuel Preissmann — 1987

Annales de l'institut Fourier

Si f est un germe 𝒞 de ( R n , 0 ) , on dira que f est une (on notera f Ψ n , m ) si tous les germes continus g de ( R , 0 ) dans ( R m , 0 ) , tels que f g 𝒞 sont eux-mêmes 𝒞 . On détermine complètement Ψ n , 1 , et on montre que Ψ 2 , 2 = Diff 2 . Par ailleurs, si K = R ou C et si g est une application de K dans K telle que g 2 et g 3 sont 𝒞 , alors g est aussi 𝒞 . Si K = H (corps des hamiloniens) alors cette implication n’est plus vraie.

Page 1

Download Results (CSV)