The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Si est un germe de , on dira que est une (on notera ) si tous les germes continus de dans , tels que sont eux-mêmes . On détermine complètement , et on montre que . Par ailleurs, si ou et si est une application de dans telle que et sont , alors est aussi . Si (corps des hamiloniens) alors cette implication n’est plus vraie.
Download Results (CSV)