We prove that there exists an example of a metrizable non-discrete space , such that but where and is the space of all continuous functions from into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel’skii ([2, Problem 4]).
We prove:
1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension.
2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension.
Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
Let X and Y be two Polish spaces. Functions f,g: X → Y are called equivalent if there exists a bijection φ from X onto itself such that g∘φ = f. Using a theorem of J. Saint Raymond we characterize functions equivalent to Borel measurable ones. This characterization answers a question asked by M. Morayne and C. Ryll-Nardzewski.
Download Results (CSV)