An answer to a question of Arhangel'skii
Commentationes Mathematicae Universitatis Carolinae (2001)
- Volume: 42, Issue: 3, page 545-550
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMichalewski, Henryk. "An answer to a question of Arhangel'skii." Commentationes Mathematicae Universitatis Carolinae 42.3 (2001): 545-550. <http://eudml.org/doc/248774>.
@article{Michalewski2001,
abstract = {We prove that there exists an example of a metrizable non-discrete space $X$, such that $C_p(X\times \omega )\approx _\{l\} C_p(X)$ but $C_p(X\times S) \lnot \approx _\{l\} C_p(X)$ where $S = (\lbrace 0\rbrace \cup \lbrace \frac\{1\}\{n+1\}:n\in \omega \rbrace )$ and $C_p(X)$ is the space of all continuous functions from $X$ into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel’skii ([2, Problem 4]).},
author = {Michalewski, Henryk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {topology of pointwise convergence; function spaces; linear homeomorphisms},
language = {eng},
number = {3},
pages = {545-550},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An answer to a question of Arhangel'skii},
url = {http://eudml.org/doc/248774},
volume = {42},
year = {2001},
}
TY - JOUR
AU - Michalewski, Henryk
TI - An answer to a question of Arhangel'skii
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 3
SP - 545
EP - 550
AB - We prove that there exists an example of a metrizable non-discrete space $X$, such that $C_p(X\times \omega )\approx _{l} C_p(X)$ but $C_p(X\times S) \lnot \approx _{l} C_p(X)$ where $S = (\lbrace 0\rbrace \cup \lbrace \frac{1}{n+1}:n\in \omega \rbrace )$ and $C_p(X)$ is the space of all continuous functions from $X$ into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel’skii ([2, Problem 4]).
LA - eng
KW - topology of pointwise convergence; function spaces; linear homeomorphisms
UR - http://eudml.org/doc/248774
ER -
References
top- Arhangel'skii A.V., Topological Function Spaces (in Russian), Moskov. Gos. Univ., Moscow, 1989. MR1019557
- Arhangel'skii A.V., Linear topological classification of spaces of continuous functions in the topology of pointwise convergence (in Russian), Mat. Sb. 181 (1990), 5 705-718. (1990) MR1055983
- Baars J., Groot J., On Topological and Linear Equivalence of the Function Spaces, CWI Tract 86, Amsterdam, 1992.
- Jech T., Set Theory, Academic Press, New York, 1978. Zbl1007.03002MR0506523
- Lutzer D.J., McCoy R.A., Category in function spaces, Pacific J. Math. 90 (1980), 145-168. (1980) Zbl0481.54017MR0599327
- Marciszewski W., van Mill J., An example of -equivalent spaces which are not -equivalent, Topology Appl. 85 (1998), 281-285. (1998) Zbl0918.54013MR1617468
- Oxtoby J., Cartesian products of Baire spaces, Fund. Math. 49 (1961), 157-166. (1961) Zbl0113.16402MR0140638
- Pol R., Note on decompositions of metric spaces II, Fund. Math. 100 (1978), 129-143. (1978) MR0494011
- Pol R., On metrizable with , Mathematika 42 (1995), 49-55. (1995) MR1346671
- Stone A.H., On -discreteness and Borel isomorphism, Amer. J. Math. 85 (1963), 655-666. (1963) Zbl0117.40103MR0156789
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.