An answer to a question of Arhangel'skii

Henryk Michalewski

Commentationes Mathematicae Universitatis Carolinae (2001)

  • Volume: 42, Issue: 3, page 545-550
  • ISSN: 0010-2628

Abstract

top
We prove that there exists an example of a metrizable non-discrete space X , such that C p ( X × ω ) l C p ( X ) but C p ( X × S ) ¬ l C p ( X ) where S = ( { 0 } { 1 n + 1 : n ω } ) and C p ( X ) is the space of all continuous functions from X into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel’skii ([2, Problem 4]).

How to cite

top

Michalewski, Henryk. "An answer to a question of Arhangel'skii." Commentationes Mathematicae Universitatis Carolinae 42.3 (2001): 545-550. <http://eudml.org/doc/248774>.

@article{Michalewski2001,
abstract = {We prove that there exists an example of a metrizable non-discrete space $X$, such that $C_p(X\times \omega )\approx _\{l\} C_p(X)$ but $C_p(X\times S) \lnot \approx _\{l\} C_p(X)$ where $S = (\lbrace 0\rbrace \cup \lbrace \frac\{1\}\{n+1\}:n\in \omega \rbrace )$ and $C_p(X)$ is the space of all continuous functions from $X$ into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel’skii ([2, Problem 4]).},
author = {Michalewski, Henryk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {topology of pointwise convergence; function spaces; linear homeomorphisms},
language = {eng},
number = {3},
pages = {545-550},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {An answer to a question of Arhangel'skii},
url = {http://eudml.org/doc/248774},
volume = {42},
year = {2001},
}

TY - JOUR
AU - Michalewski, Henryk
TI - An answer to a question of Arhangel'skii
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2001
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 42
IS - 3
SP - 545
EP - 550
AB - We prove that there exists an example of a metrizable non-discrete space $X$, such that $C_p(X\times \omega )\approx _{l} C_p(X)$ but $C_p(X\times S) \lnot \approx _{l} C_p(X)$ where $S = (\lbrace 0\rbrace \cup \lbrace \frac{1}{n+1}:n\in \omega \rbrace )$ and $C_p(X)$ is the space of all continuous functions from $X$ into reals equipped with the topology of pointwise convergence. It answers a question of Arhangel’skii ([2, Problem 4]).
LA - eng
KW - topology of pointwise convergence; function spaces; linear homeomorphisms
UR - http://eudml.org/doc/248774
ER -

References

top
  1. Arhangel'skii A.V., Topological Function Spaces (in Russian), Moskov. Gos. Univ., Moscow, 1989. MR1019557
  2. Arhangel'skii A.V., Linear topological classification of spaces of continuous functions in the topology of pointwise convergence (in Russian), Mat. Sb. 181 (1990), 5 705-718. (1990) MR1055983
  3. Baars J., Groot J., On Topological and Linear Equivalence of the Function Spaces, CWI Tract 86, Amsterdam, 1992. 
  4. Jech T., Set Theory, Academic Press, New York, 1978. Zbl1007.03002MR0506523
  5. Lutzer D.J., McCoy R.A., Category in function spaces, Pacific J. Math. 90 (1980), 145-168. (1980) Zbl0481.54017MR0599327
  6. Marciszewski W., van Mill J., An example of t p * -equivalent spaces which are not t p -equivalent, Topology Appl. 85 (1998), 281-285. (1998) Zbl0918.54013MR1617468
  7. Oxtoby J., Cartesian products of Baire spaces, Fund. Math. 49 (1961), 157-166. (1961) Zbl0113.16402MR0140638
  8. Pol R., Note on decompositions of metric spaces II, Fund. Math. 100 (1978), 129-143. (1978) MR0494011
  9. Pol R., On metrizable E with C p ( E ) ¬ C p ( E ) × C p ( E ) , Mathematika 42 (1995), 49-55. (1995) MR1346671
  10. Stone A.H., On σ -discreteness and Borel isomorphism, Amer. J. Math. 85 (1963), 655-666. (1963) Zbl0117.40103MR0156789

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.