Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

A linear scheme to approximate nonlinear cross-diffusion systems

Hideki Murakawa — 2011

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger [ (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems

Hideki Murakawa — 2009

Kybernetika

This paper deals with nonlinear diffusion problems involving degenerate parabolic problems, such as the Stefan problem and the porous medium equation, and cross-diffusion systems in population ecology. The degeneracy of the diffusion and the effect of cross-diffusion, that is, nonlinearities of the diffusion, complicate its analysis. In order to avoid the nonlinearities, we propose a reaction-diffusion system with solutions that approximate those of the nonlinear diffusion problems. The reaction-diffusion...

A linear scheme to approximate nonlinear cross-diffusion systems

Hideki Murakawa — 2011

ESAIM: Mathematical Modelling and Numerical Analysis

This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger [ (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile,...

An efficient linear numerical scheme for the Stefan problem, the porous medium equation and nonlinear cross-diffusion systems

Molati, MotlatsiMurakawa, Hideki — 2017

Proceedings of Equadiff 14

This paper deals with nonlinear diffusion problems which include the Stefan problem, the porous medium equation and cross-diffusion systems. We provide a linear scheme for these nonlinear diffusion problems. The proposed numerical scheme has many advantages. Namely, the implementation is very easy and the ensuing linear algebraic systems are symmetric, which show low computational cost. Moreover, this scheme has the accuracy comparable to that of the wellstudied nonlinear schemes and make it possible...

Page 1

Download Results (CSV)