A linear scheme to approximate nonlinear cross-diffusion systems*
ESAIM: Mathematical Modelling and Numerical Analysis (2011)
- Volume: 45, Issue: 6, page 1141-1161
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMurakawa, Hideki. "A linear scheme to approximate nonlinear cross-diffusion systems*." ESAIM: Mathematical Modelling and Numerical Analysis 45.6 (2011): 1141-1161. <http://eudml.org/doc/276354>.
@article{Murakawa2011,
abstract = {
This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile, easy to implement and efficient numerical scheme for the cross-diffusion systems. Numerical experiments are carried out to demonstrate the effectiveness of the proposed scheme.
},
author = {Murakawa, Hideki},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Cross-diffusion systems; nonlinear diffusion; discrete-time schemes; numerical schemes; Reaction-diffusion system approximations; cross-diffusion systems; reaction-diffusion system; stability; convergence; numerical experiments},
language = {eng},
month = {7},
number = {6},
pages = {1141-1161},
publisher = {EDP Sciences},
title = {A linear scheme to approximate nonlinear cross-diffusion systems*},
url = {http://eudml.org/doc/276354},
volume = {45},
year = {2011},
}
TY - JOUR
AU - Murakawa, Hideki
TI - A linear scheme to approximate nonlinear cross-diffusion systems*
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2011/7//
PB - EDP Sciences
VL - 45
IS - 6
SP - 1141
EP - 1161
AB -
This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile, easy to implement and efficient numerical scheme for the cross-diffusion systems. Numerical experiments are carried out to demonstrate the effectiveness of the proposed scheme.
LA - eng
KW - Cross-diffusion systems; nonlinear diffusion; discrete-time schemes; numerical schemes; Reaction-diffusion system approximations; cross-diffusion systems; reaction-diffusion system; stability; convergence; numerical experiments
UR - http://eudml.org/doc/276354
ER -
References
top- J.W. Barrett and J.F. Blowey, Finite element approximation of a nonlinear cross-diffusion population model. Numer. Math.98 (2004) 195–221.
- G. Beckett, J.A. Mackenzie and M.L. Robertson, A moving mesh finite element method for the solution of two-dimensional Stefan problems. J. Comp. Phys.168 (2001) 500–518.
- A.E. Berger, H. Brezis and J.C.W. Rogers, A numerical method for solving the problem ut-Δf(u) = 0. RAIRO Anal. Numer.13 (1979) 297–312.
- H. Brézis, Analyse Fonctionnelle. Masson (1983).
- L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal.36 (2004) 301–322.
- L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differ. Equ.224 (2006) 39–59.
- G. Galiano, M.L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics. Rev. R. Acad. Cien. Ser. A Mat.95 (2001) 281–295.
- G. Galiano, M.L. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model. Numer. Math.93 (2003) 655–673.
- M.E. Gurtin, Some mathematical models for population dynamics that lead to segregation. Quart. Appl. Math. 32 (1974) 1–9.
- W. Jäger and J. Kačur, Solution of porous medium type systems by linear approximation schemes. Numer. Math.60 (1991) 407–427.
- J. Kačur, A. Handlovičová and M. Kačurová, Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal.30 (1993) 1703–1722.
- T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms. J. Math. Anal. Appl. 323 (2006) 1387–1401.
- E.H. Kerner, Further considerations on the statistical mechanics of biological associations. Bull. Math. Biophys. 21 (1959) 217–255.
- E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. Math. Mod. Numer. Anal.21 (1987) 655–678.
- M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations. J. Math. Biol.9 (1980) 49–64.
- H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems. Nonlinearity20 (2007) 2319–2332.
- H. Murakawa, A relation between cross-diffusion and reaction-diffusion. Discrete Contin. Dyn. Syst. S5 (2012) 147–158.
- R.H. Nochetto and C. Verdi, An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comput.51 (1988) 27–53.
- R.H. Nochetto and C. Verdi, The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems. Numer. Funct. Anal. Optim.9 (1988) 1177–1192.
- R.H. Nochetto, M. Paolini and C. Verdi, An adaptive finite element method for two-phase Stefan problems in two space dimensions. Part I: stability and error estimates. Math. Comput.57 (1991) 73–108.
- R.H. Nochetto, M. Paolini and C. Verdi, A fully discrete adaptive nonlinear Chernoff formula. SIAM J. Numer. Anal.30 (1993) 991–1014.
- R.H. Nochetto, A. Schmidt and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput.69 (1999) 1–24.
- P.Y.H. Pang and M.X. Wang, Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ.200 (2004) 245–273.
- N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species. J. Theor. Biol. 79 (1979) 83–99.
- R. Temam, Navier-Stokes equation theory and numerical analysis. AMS Chelsea Publishing, Providence, RI (2001).
- C. Verdi, Numerical aspects of parabolic free boundary and hysteresis problems. Lecture Notes in Mathematics1584 (1994) 213–284.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.