A linear scheme to approximate nonlinear cross-diffusion systems*

Hideki Murakawa

ESAIM: Mathematical Modelling and Numerical Analysis (2011)

  • Volume: 45, Issue: 6, page 1141-1161
  • ISSN: 0764-583X

Abstract

top
This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile, easy to implement and efficient numerical scheme for the cross-diffusion systems. Numerical experiments are carried out to demonstrate the effectiveness of the proposed scheme.

How to cite

top

Murakawa, Hideki. "A linear scheme to approximate nonlinear cross-diffusion systems*." ESAIM: Mathematical Modelling and Numerical Analysis 45.6 (2011): 1141-1161. <http://eudml.org/doc/276354>.

@article{Murakawa2011,
abstract = { This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile, easy to implement and efficient numerical scheme for the cross-diffusion systems. Numerical experiments are carried out to demonstrate the effectiveness of the proposed scheme. },
author = {Murakawa, Hideki},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Cross-diffusion systems; nonlinear diffusion; discrete-time schemes; numerical schemes; Reaction-diffusion system approximations; cross-diffusion systems; reaction-diffusion system; stability; convergence; numerical experiments},
language = {eng},
month = {7},
number = {6},
pages = {1141-1161},
publisher = {EDP Sciences},
title = {A linear scheme to approximate nonlinear cross-diffusion systems*},
url = {http://eudml.org/doc/276354},
volume = {45},
year = {2011},
}

TY - JOUR
AU - Murakawa, Hideki
TI - A linear scheme to approximate nonlinear cross-diffusion systems*
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2011/7//
PB - EDP Sciences
VL - 45
IS - 6
SP - 1141
EP - 1161
AB - This paper proposes a linear discrete-time scheme for general nonlinear cross-diffusion systems. The scheme can be regarded as an extension of a linear scheme based on the nonlinear Chernoff formula for the degenerate parabolic equations, which proposed by Berger et al. [RAIRO Anal. Numer.13 (1979) 297–312]. We analyze stability and convergence of the linear scheme. To this end, we apply the theory of reaction-diffusion system approximation. After discretizing the scheme in space, we obtain a versatile, easy to implement and efficient numerical scheme for the cross-diffusion systems. Numerical experiments are carried out to demonstrate the effectiveness of the proposed scheme.
LA - eng
KW - Cross-diffusion systems; nonlinear diffusion; discrete-time schemes; numerical schemes; Reaction-diffusion system approximations; cross-diffusion systems; reaction-diffusion system; stability; convergence; numerical experiments
UR - http://eudml.org/doc/276354
ER -

References

top
  1. J.W. Barrett and J.F. Blowey, Finite element approximation of a nonlinear cross-diffusion population model. Numer. Math.98 (2004) 195–221.  
  2. G. Beckett, J.A. Mackenzie and M.L. Robertson, A moving mesh finite element method for the solution of two-dimensional Stefan problems. J. Comp. Phys.168 (2001) 500–518.  
  3. A.E. Berger, H. Brezis and J.C.W. Rogers, A numerical method for solving the problem ut-Δf(u) = 0. RAIRO Anal. Numer.13 (1979) 297–312.  
  4. H. Brézis, Analyse Fonctionnelle. Masson (1983).  
  5. L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal.36 (2004) 301–322.  
  6. L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differ. Equ.224 (2006) 39–59.  
  7. G. Galiano, M.L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics. Rev. R. Acad. Cien. Ser. A Mat.95 (2001) 281–295.  
  8. G. Galiano, M.L. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model. Numer. Math.93 (2003) 655–673.  
  9. M.E. Gurtin, Some mathematical models for population dynamics that lead to segregation. Quart. Appl. Math. 32 (1974) 1–9.  
  10. W. Jäger and J. Kačur, Solution of porous medium type systems by linear approximation schemes. Numer. Math.60 (1991) 407–427.  
  11. J. Kačur, A. Handlovičová and M. Kačurová, Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal.30 (1993) 1703–1722.  
  12. T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms. J. Math. Anal. Appl. 323 (2006) 1387–1401.  
  13. E.H. Kerner, Further considerations on the statistical mechanics of biological associations. Bull. Math. Biophys. 21 (1959) 217–255.  
  14. E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. Math. Mod. Numer. Anal.21 (1987) 655–678.  
  15. M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations. J. Math. Biol.9 (1980) 49–64.  
  16. H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems. Nonlinearity20 (2007) 2319–2332.  
  17. H. Murakawa, A relation between cross-diffusion and reaction-diffusion. Discrete Contin. Dyn. Syst. S5 (2012) 147–158.  
  18. R.H. Nochetto and C. Verdi, An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comput.51 (1988) 27–53.  
  19. R.H. Nochetto and C. Verdi, The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems. Numer. Funct. Anal. Optim.9 (1988) 1177–1192.  
  20. R.H. Nochetto, M. Paolini and C. Verdi, An adaptive finite element method for two-phase Stefan problems in two space dimensions. Part I: stability and error estimates. Math. Comput.57 (1991) 73–108.  
  21. R.H. Nochetto, M. Paolini and C. Verdi, A fully discrete adaptive nonlinear Chernoff formula. SIAM J. Numer. Anal.30 (1993) 991–1014.  
  22. R.H. Nochetto, A. Schmidt and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput.69 (1999) 1–24.  
  23. P.Y.H. Pang and M.X. Wang, Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ.200 (2004) 245–273.  
  24. N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species. J. Theor. Biol. 79 (1979) 83–99.  
  25. R. Temam, Navier-Stokes equation theory and numerical analysis. AMS Chelsea Publishing, Providence, RI (2001).  
  26. C. Verdi, Numerical aspects of parabolic free boundary and hysteresis problems. Lecture Notes in Mathematics1584 (1994) 213–284.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.