We consider the following bottleneck transportation problem with both random and fuzzy factors. There exist supply points with flexible supply quantity and demand points with flexible demand quantity. For each supply-demand point pair, the transportation time is an independent positive random variable according to a normal distribution. Satisfaction degrees about the supply and demand quantity are attached to each supply and each demand point, respectively. They are denoted by membership functions...
A single-machine batch scheduling problem is investigated. Each job has a positive processing time and due-date. Setup times are assumed to be identical for all batches. All batch sizes cannot exceed a common upper bound. As in many practical situations, jobs have to be subject to flexible precedence constraints. The aim of this paper is to find an optimal batch sequence. The sequence is to minimize the maximal completion time and maximize the minimum value of desirability of the fuzzy precedence....
This paper considers a variant of the bottleneck transportation problem. For each supply-demand point pair, the transportation time is an independent random variable. Preference of each route is attached. Our model has two criteria, namely: minimize the transportation time target subject to a chance constraint and maximize the minimal preference among the used routes. Since usually a transportation pattern optimizing two objectives simultaneously does not exist, we define non-domination in this...
Download Results (CSV)