Atomic surfaces, tilings and coincidences II. Reducible case
The atomic surfaces of unimodular Pisot substitutions of irreducible type have been studied by many authors. In this article, we study the atomic surfaces of Pisot substitutions of reducible type. As an analogue of the irreducible case, we define the stepped-surface and the dual substitution over it. Using these notions, we give a simple proof to the fact that atomic surfaces form a self-similar tiling system. We show that the stepped-surface possesses the quasi-periodic property, which...