On substitution invariant Sturmian words: an application of Rauzy fractals
Valérie Berthé; Hiromi Ei; Shunji Ito; Hui Rao
RAIRO - Theoretical Informatics and Applications (2007)
- Volume: 41, Issue: 3, page 329-349
 - ISSN: 0988-3754
 
Access Full Article
topAbstract
topHow to cite
topBerthé, Valérie, et al. "On substitution invariant Sturmian words: an application of Rauzy fractals." RAIRO - Theoretical Informatics and Applications 41.3 (2007): 329-349. <http://eudml.org/doc/250017>.
@article{Berthé2007,
	abstract = {
Sturmian words are infinite words that have exactly
n+1 factors of length n for every positive integer n.
 A Sturmian word sα,p is also defined
as a coding over a two-letter alphabet of the orbit
 of point ρ under the action
 of the irrational rotation Rα : x → x + α (mod 1).
A substitution fixes a Sturmian word if and only if it is invertible.
The main object of the present paper is to investigate Rauzy fractals
 associated with two-letter invertible substitutions.
 As an application, we give an alternative
 geometric proof of Yasutomi's characterization
of all pairs (α,p) such that sα,p is a fixed
point of some non-trivial substitution.
},
	author = {Berthé, Valérie, Ei, Hiromi, Ito, Shunji, Rao, Hui},
	journal = {RAIRO - Theoretical Informatics and Applications},
	keywords = {Sturmian words; Rauzy fractals; invertible substitutions; automorphisms of the free monoid; tilings},
	language = {eng},
	month = {9},
	number = {3},
	pages = {329-349},
	publisher = {EDP Sciences},
	title = {On substitution invariant Sturmian words: an application of Rauzy fractals},
	url = {http://eudml.org/doc/250017},
	volume = {41},
	year = {2007},
}
TY  - JOUR
AU  - Berthé, Valérie
AU  - Ei, Hiromi
AU  - Ito, Shunji
AU  - Rao, Hui
TI  - On substitution invariant Sturmian words: an application of Rauzy fractals
JO  - RAIRO - Theoretical Informatics and Applications
DA  - 2007/9//
PB  - EDP Sciences
VL  - 41
IS  - 3
SP  - 329
EP  - 349
AB  - 
Sturmian words are infinite words that have exactly
n+1 factors of length n for every positive integer n.
 A Sturmian word sα,p is also defined
as a coding over a two-letter alphabet of the orbit
 of point ρ under the action
 of the irrational rotation Rα : x → x + α (mod 1).
A substitution fixes a Sturmian word if and only if it is invertible.
The main object of the present paper is to investigate Rauzy fractals
 associated with two-letter invertible substitutions.
 As an application, we give an alternative
 geometric proof of Yasutomi's characterization
of all pairs (α,p) such that sα,p is a fixed
point of some non-trivial substitution.
LA  - eng
KW  - Sturmian words; Rauzy fractals; invertible substitutions; automorphisms of the free monoid; tilings
UR  - http://eudml.org/doc/250017
ER  - 
References
top- S. Akiyama, and N. Gjini, Connectedness of number theoretic tilings. Arch. Math. (Basel)82 (2004) 153–163.
 - C. Allauzen, Une caractérisation simple des nombres de Sturm. J. Théor. Nombres Bordeaux10 (1998) 237–241.
 - P. Arnoux, and S. Ito, Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin8 (2001) 181–207.
 - P. Baláži, S. Masáková, and E. Pelantová, Complete characterization of substitution invariant Sturmian sequences. Integers: electronic journal of combinatorial number theory5 (2005) A14.
 - M. Barge, and B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France130 (2002) 619–626.
 - D. Bernardi, A. Guerziz, and M. Koskas, Sturmian Words: description and orbits. Preprint.
 - J. Berstel, and P. Séébold, A remark on morphic Sturmian words. RAIRO-Theor. Inf. Appl.28 (1994) 255–263.
 - J. Berstel, and P. Séébold, Morphismes de Sturm. Bull. Belg. Math. Soc. Simon Stevin1 (1994) 175–189.
 - V. Berthé, and L. Vuillon, Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Math.223 (2000) 27–53.
 - V. Berthé, C. Holton, and L.Q. Zamboni, Initial powers of Sturmian words. Acta Arith.122 (2006) 315–347.
 - T.C. Brown, Descriptions of the characteristic sequence of an irrational. Canad. Math. Bull.36 (1993) 15–21.
 - V. Canterini, Connectedness of geometric representation of substitutions of Pisot type. Bull. Belg. Math. Soc. Simon Stevin10 (2003) 77–89.
 - E.M. Coven, and G.A. Hedlund, Sequences with minimal block growth. Math. Syst. Theory7 (1973) 138–153.
 - D. Crisp, W. Moran, A. Pollington, and P. Shiue, Substitution invariant cutting sequence. J. Théor. Nombres Bordeaux5 (1993) 123–137.
 - H. Ei, and S. Ito, Decomposition theorem on invertible substitutions. Osaka J. Math.35 (1998) 821–834.
 - I. Fagnot, A little more about morphic Sturmian words. RAIRO-Theor. Inf. Appl.40 (2006), 511–518.
 - K. Falconer, Techniques in Fractal Geometry. Oxford University Press, 5th edition (1979).
 - S. Ito, and H. Rao, Purely periodic β-expansions with Pisot unit base. Proc. Amer. Math. Soc.133 (2005) 953–964.
 - S. Ito, and H. Rao, Atomic surfaces, tilings and coincidence I. Irreducible case. Israel J. Math.153 (2006) 129–156.
 - S. Ito, and Y. Sano, On periodic β-expansions of Pisot numbers and Rauzy fractals. Osaka J. Math.38 (2001) 349–368.
 - S. Ito, and S. Yasutomi, On continued fractions, substitutions and characteristic sequences [nx + y] - [(n - 1)x + y]. Japan J. Math.16 (1990) 287–306.
 - T. Komatsu, and A.J. van der Poorten, Substitution invariant Beatty sequences. Japan J. Math., New Ser.22 (1996) 349–354.
 - M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002).
 - F. Mignosi, and P. Séébold, Morphismes sturmiens et règles de Rauzy. J. Théor. Nombres Bordeaux5 (1993) 221–233.
 - M. Morse, and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math.62 (1940) 1–42.
 - B. Parvaix, Propriétés d'invariance des mots sturmiens. J. Théor. Nombres Bordeaux9 (1997) 351–369.
 - B. Parvaix, Substitution invariant Sturmian bisequences. J. Théor. Nombres Bordeaux11 (1999) 201–210.
 - N. Pytheas Fogg, Substitutions in Arithmetics, Dynamics and Combinatorics, V. Berthé, S. Ferenczi, C.Mauduit, A. Siegel Eds., Springer Verlag. Lect. Notes Math.1794 (2002).
 - M. Queffélec, Substitution Dynamical Systems. Spectral Analysis, Springer-Verlag. Lect. Notes Math.1294 (1987).
 - G. Rauzy, Nombres algebriques et substitutions, Bull. Soc. Math. France110 (1982) 147–178.
 - P. Séébold, On the conjugation of standard morphisms. Theoret. Comput. Sci.195 (1998) 91–109.
 - V. Sirvent, and Y. Wang, Geometry of Rauzy fractals. Pacific J. Math.206 (2002) 465–485.
 - B. Tan, and Z.-Y. Wen, Invertible substitutions and Sturmian sequences. European J. Combinatorics24 (2003) 983–1002.
 - Z.-X. Wen, and Wen Z.-Y., Local isomorphisms of invertible substitutions. C. R. Acad. Sci. Paris Sér. I318 (1994) 299–304.
 - S.-I. Yasutomi, On Sturmian sequences which are invariant under some substitutions, in Number theory and its applications (Kyoto, 1997). Kluwer Acad. Publ., Dordrecht (1999) 347–373.
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.