The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

Algebro-geometric solutions of the Camassa-Holm hierarchy.

Fritz GesztesyHelge Holden — 2003

Revista Matemática Iberoamericana

We provide a detailed treatment of the Camassa-Holm (CH) hierarchy with special emphasis on its algebro-geometric solutions. In analogy to other completely integrable hierarchies of soliton equations such as the KdV or AKNS hierarchies, the CH hierarchy is recursively constructed by means of a basic polynomial formalism invoking a spectral parameter. Moreover, we study Dubrovin-type equations for auxiliary divisors and associated trace formulas, consider the corresponding algebro-geometric initial...

Periodic conservative solutions of the Camassa–Holm equation

Helge HoldenXavier Raynaud — 2008

Annales de l’institut Fourier

We show that the periodic Camassa–Holm equation u t - u x x t + 3 u u x - 2 u x u x x - u u x x x = 0 possesses a global continuous semigroup of weak conservative solutions for initial data u | t = 0 in H per 1 . The result is obtained by introducing a coordinate transformation into Lagrangian coordinates. To characterize conservative solutions it is necessary to include the energy density given by the positive Radon measure μ with μ ac = ( u 2 + u x 2 ) d x . The total energy is preserved by the solution.

Page 1

Download Results (CSV)