Periodic conservative solutions of the Camassa–Holm equation

Helge Holden[1]; Xavier Raynaud[2]

  • [1] Norwegian University of Science and Technology Department of Mathematical Sciences 7491 Trondheim (Norway) University of Oslo Centre of Mathematics for Applications P.O. Box 1053, Blindern 0316 Oslo (Norway)
  • [2] Norwegian University of Science and Technology Department of Mathematical Sciences 7491 Trondheim (Norway)

Annales de l’institut Fourier (2008)

  • Volume: 58, Issue: 3, page 945-988
  • ISSN: 0373-0956

Abstract

top
We show that the periodic Camassa–Holm equation u t - u x x t + 3 u u x - 2 u x u x x - u u x x x = 0 possesses a global continuous semigroup of weak conservative solutions for initial data u | t = 0 in H per 1 . The result is obtained by introducing a coordinate transformation into Lagrangian coordinates. To characterize conservative solutions it is necessary to include the energy density given by the positive Radon measure μ with μ ac = ( u 2 + u x 2 ) d x . The total energy is preserved by the solution.

How to cite

top

Holden, Helge, and Raynaud, Xavier. "Periodic conservative solutions of the Camassa–Holm equation." Annales de l’institut Fourier 58.3 (2008): 945-988. <http://eudml.org/doc/10340>.

@article{Holden2008,
abstract = {We show that the periodic Camassa–Holm equation $u_t-u_\{xxt\}+3uu_x-2u_xu_\{xx\}-uu_\{xxx\}=0$ possesses a global continuous semigroup of weak conservative solutions for initial data $u|_\{t=0\}$ in $H_\{\rm per\}^1$. The result is obtained by introducing a coordinate transformation into Lagrangian coordinates. To characterize conservative solutions it is necessary to include the energy density given by the positive Radon measure $\mu $ with $\mu _\{\rm ac\}=(u^2+u_x^2)dx$. The total energy is preserved by the solution.},
affiliation = {Norwegian University of Science and Technology Department of Mathematical Sciences 7491 Trondheim (Norway) University of Oslo Centre of Mathematics for Applications P.O. Box 1053, Blindern 0316 Oslo (Norway); Norwegian University of Science and Technology Department of Mathematical Sciences 7491 Trondheim (Norway)},
author = {Holden, Helge, Raynaud, Xavier},
journal = {Annales de l’institut Fourier},
keywords = {Camassa–Holm equation; periodic solution; periodic conservative solution; Lagrangian coordinate},
language = {eng},
number = {3},
pages = {945-988},
publisher = {Association des Annales de l’institut Fourier},
title = {Periodic conservative solutions of the Camassa–Holm equation},
url = {http://eudml.org/doc/10340},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Holden, Helge
AU - Raynaud, Xavier
TI - Periodic conservative solutions of the Camassa–Holm equation
JO - Annales de l’institut Fourier
PY - 2008
PB - Association des Annales de l’institut Fourier
VL - 58
IS - 3
SP - 945
EP - 988
AB - We show that the periodic Camassa–Holm equation $u_t-u_{xxt}+3uu_x-2u_xu_{xx}-uu_{xxx}=0$ possesses a global continuous semigroup of weak conservative solutions for initial data $u|_{t=0}$ in $H_{\rm per}^1$. The result is obtained by introducing a coordinate transformation into Lagrangian coordinates. To characterize conservative solutions it is necessary to include the energy density given by the positive Radon measure $\mu $ with $\mu _{\rm ac}=(u^2+u_x^2)dx$. The total energy is preserved by the solution.
LA - eng
KW - Camassa–Holm equation; periodic solution; periodic conservative solution; Lagrangian coordinate
UR - http://eudml.org/doc/10340
ER -

References

top
  1. R. Abraham, J. E. Marsden, T. Ratiu, Manifolds, Tensor Analysis, and Applications, (1988), Springer-Verlag, New York Zbl0875.58002MR960687
  2. L. Ambrosio, N. Fusco, D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, (2000), Oxford University Press, New York Zbl0957.49001MR1857292
  3. V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, (1998), Springer-Verlag, New York Zbl0902.76001MR1612569
  4. R. Beals, D. H. Sattinger, J. Szmigielski, Multi-peakons and a theorem of Stieltjes, Inverse Problems 15 (1999), L1-L4 Zbl0923.35154MR1675325
  5. A. Bressan, A. Constantin, Global conservative solutions of the Camassa–Holm equation, Arch. Ration. Mech. Anal. 183 (2007), 215-239 Zbl1105.76013MR2278406
  6. A. Bressan, M. Fonte, An optimal transportation metric for solutions of the Camassa–Holm equation, Methods Appl. Anal. 12 (2005), 191-220 Zbl1133.35054MR2257527
  7. R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71 (1993), 1661-1664 Zbl0972.35521MR1234453
  8. R. Camassa, D. D. Holm, J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech. 31 (1994), 1-33 Zbl0808.76011
  9. G. M. Coclite, H. Holden, K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation, SIAM J. Math. Anal. 37 (2005), 1044-1069 Zbl1100.35106MR2192287
  10. G. M. Coclite, H. Holden, K. H. Karlsen, Well-posedness for a parabolic-elliptic system, Discrete Cont. Dynam. Systems 13 (2005), 659-682 Zbl1082.35056MR2152336
  11. A. Constantin, On the Cauchy problem for the periodic Camassa–Holm equation, J. Differential Equations 141 (1997), 218-235 Zbl0889.35022MR1488351
  12. A. Constantin, On the inverse spectral problem for the Camassa–Holm equation, J. Funct. Anal. 155 (1998), 352-363 Zbl0907.35009MR1624553
  13. A. Constantin, Existence of permanent and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier, Grenoble 50 (2000), 321-362 Zbl0944.35062MR1775353
  14. A. Constantin, J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51 (1998), 475-504 Zbl0934.35153MR1604278
  15. A. Constantin, J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z. 233 (2000), 75-91 Zbl0954.35136MR1738352
  16. A. Constantin, B. Kolev, On the geometric approach to the motion of inertial mechanical systems, J. Phys. A 35 (2002), R51-R79 Zbl1039.37068MR1930889
  17. A. Constantin, B. Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv. 78 (2003), 787-804 Zbl1037.37032MR2016696
  18. A. Constantin, B. Kolev, Integrability of invariant metrics on the diffeomorphism group of the circle, J. Nonlinear Sci. 16 (2006), 109-122 Zbl1170.37336MR2216268
  19. A. Constantin, H. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math. 52 (1999), 949-982 Zbl0940.35177MR1686969
  20. A. Constantin, L. Molinet, Global weak solutions for a shallow water equation, Comm. Math. Phys. 211 (2000), 45-61 Zbl1002.35101MR1757005
  21. A. Constantin, W. A. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000), 603-610 Zbl1049.35149MR1737505
  22. G. B. Folland, Real Analysis, (1999), John Wiley & Sons Inc., New York Zbl0549.28001MR1681462
  23. M. Fonte, Conservative solution of the Camassa–Holm equation on the real line, (2005) Zbl1133.35054
  24. H. Holden, K. H. Karlsen, N. H. Risebro, Convergent difference schemes for the Hunter–Saxton equation, Math. Comp. 76 (2007), 699-744 Zbl1114.65101MR2291834
  25. H. Holden, X. Raynaud, Convergence of a finite difference scheme for the Camassa–Holm equation, SIAM J. Numer. Anal. 44 (2006), 1655-1680 Zbl1122.76065MR2257121
  26. H. Holden, X. Raynaud, A convergent numerical scheme for the Camassa–Holm equation based on multipeakons, Discrete Contin. Dyn. Syst. 14 (2006), 505-523 Zbl1111.35061MR2171724
  27. H. Holden, X. Raynaud, Global conservative multipeakon solutions of the Camassa–Holm equation, J. Hyperbolic Differ. Equ. 4 (2007), 39-64 Zbl1128.65065MR2303475
  28. H. Holden, X. Raynaud, Global conservative solutions of the Camassa–Holm equation — a Lagrangian point of view, Comm. Partial Differential Equations 32 (2007), 1511-1549 Zbl1136.35080MR2372478
  29. H. Holden, X. Raynaud, Global conservative solutions of the generalized hyperelastic-rod wave equation, J. Differential Equations 233 (2007), 448-484 Zbl1116.35115MR2292515
  30. R. S. Johnson, Camassa–Holm, Korteweg–de Vries and related models for water waves, J. Fluid Mech. 455 (2002), 63-82 Zbl1037.76006MR1894796
  31. G. Misiołek, A shallow water equation as a geodesic flow on the Bott–Virasoro group, J. Geom. Phys. 24 (1998), 203-208 Zbl0901.58022
  32. G. Misiołek, Classical solutions of the periodic Camassa–Holm equation., Geom. Funct. Anal. 12 (2002), 1080-1104 Zbl1158.37311
  33. K. Yosida, Functional Analysis, (1995), Springer-Verlag, Berlin MR1336382

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.