Currently displaying 1 – 20 of 28

Showing per page

Order by Relevance | Title | Year of publication

Borel sets with σ-compact sections for nonseparable spaces

Petr Holický — 2008

Fundamenta Mathematicae

We prove that every (extended) Borel subset E of X × Y, where X is complete metric and Y is Polish, can be covered by countably many extended Borel sets with compact sections if the sections E x = y Y : ( x , y ) E , x ∈ X, are σ-compact. This is a nonseparable version of a theorem of Saint Raymond. As a by-product, we get a proof of Saint Raymond’s result which does not use transfinite induction.

Borel classes of uniformizations of sets with large sections

Petr Holický — 2010

Fundamenta Mathematicae

We give several refinements of known theorems on Borel uniformizations of sets with “large sections”. In particular, we show that a set B ⊂ [0,1] × [0,1] which belongs to Σ α , α ≥ 2, and which has all “vertical” sections of positive Lebesgue measure, has a Π α uniformization which is the graph of a Σ α -measurable mapping. We get a similar result for sets with nonmeager sections. As a corollary we derive an improvement of Srivastava’s theorem on uniformizations for Borel sets with G δ sections.

Extensions of Borel Measurable Maps and Ranges of Borel Bimeasurable Maps

Petr Holický — 2004

Bulletin of the Polish Academy of Sciences. Mathematics

We prove an abstract version of the Kuratowski extension theorem for Borel measurable maps of a given class. It enables us to deduce and improve its nonseparable version due to Hansell. We also study the ranges of not necessarily injective Borel bimeasurable maps f and show that some control on the relative classes of preimages and images of Borel sets under f enables one to get a bound on the absolute class of the range of f. This seems to be of some interest even within separable spaces.

Generalized analytic spaces, completeness and fragmentability

Petr Holický — 2001

Czechoslovak Mathematical Journal

Classical analytic spaces can be characterized as projections of Polish spaces. We prove analogous results for three classes of generalized analytic spaces that were introduced by Z. Frolík, D. Fremlin and R. Hansell. We use the technique of complete sequences of covers. We explain also some relations of analyticity to certain fragmentability properties of topological spaces endowed with an additional metric.

Binormality of Banach spaces

Petr Holický — 1997

Commentationes Mathematicae Universitatis Carolinae

We study binormality, a separation property of spaces endowed with two topologies known in the real analysis as the Luzin-Menchoff property. The main object of our interest are Banach spaces with their norm and weak topologies. We show that every separable Banach space is binormal and the space is not binormal.

F σ -mappings and the invariance of absolute Borel classes

Petr HolickýJiří Spurný — 2004

Fundamenta Mathematicae

It is proved that F σ -mappings preserve absolute Borel classes, which improves results of R. W. Hansell, J. E. Jayne and C. A. Rogers. The proof is based on the fact that any F σ -mapping f: X → Y of an absolute Suslin metric space X onto an absolute Suslin metric space Y becomes a piecewise perfect mapping when restricted to a suitable F σ -set X X satisfying f ( X ) = Y .

Descriptive properties of mappings between nonseparable Luzin spaces

Petr HolickýVáclav Komínek — 2007

Czechoslovak Mathematical Journal

We relate some subsets G of the product X × Y of nonseparable Luzin (e.g., completely metrizable) spaces to subsets H of × Y in a way which allows to deduce descriptive properties of G from corresponding theorems on H . As consequences we prove a nonseparable version of Kondô’s uniformization theorem and results on sets of points y in Y with particular properties of fibres f - 1 ( y ) of a mapping f X Y . Using these, we get descriptions of bimeasurable mappings between nonseparable Luzin spaces in terms of fibres.

Page 1 Next

Download Results (CSV)