Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Degree sums of adjacent vertices for traceability of claw-free graphs

Tao TianLiming XiongZhi-Hong ChenShipeng Wang — 2022

Czechoslovak Mathematical Journal

The line graph of a graph G , denoted by L ( G ) , has E ( G ) as its vertex set, where two vertices in L ( G ) are adjacent if and only if the corresponding edges in G have a vertex in common. For a graph H , define σ ¯ 2 ( H ) = min { d ( u ) + d ( v ) : u v E ( H ) } . Let H be a 2-connected claw-free simple graph of order n with δ ( H ) 3 . We show that, if σ ¯ 2 ( H ) 1 7 ( 2 n - 5 ) and n is sufficiently large, then either H is traceable or the Ryjáček’s closure cl ( H ) = L ( G ) , where G is an essentially 2 -edge-connected triangle-free graph that can be contracted to one of the two graphs of order 10 which have...

Trees with equal total domination and total restrained domination numbers

Xue-Gang ChenWai Chee ShiuHong-Yu Chen — 2008

Discussiones Mathematicae Graph Theory

For a graph G = (V,E), a set S ⊆ V(G) is a total dominating set if it is dominating and both ⟨S⟩ has no isolated vertices. The cardinality of a minimum total dominating set in G is the total domination number. A set S ⊆ V(G) is a total restrained dominating set if it is total dominating and ⟨V(G)-S⟩ has no isolated vertices. The cardinality of a minimum total restrained dominating set in G is the total restrained domination number. We characterize all trees for which total domination and total restrained...

On the total restrained domination number of direct products of graphs

Wai Chee ShiuHong-Yu ChenXue-Gang ChenPak Kiu Sun — 2012

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a graph. A total restrained dominating set is a set S ⊆ V where every vertex in V∖S is adjacent to a vertex in S as well as to another vertex in V∖S, and every vertex in S is adjacent to another vertex in S. The total restrained domination number of G, denoted by γ r t ( G ) , is the smallest cardinality of a total restrained dominating set of G. We determine lower and upper bounds on the total restrained domination number of the direct product of two graphs. Also, we show that these bounds...

Page 1

Download Results (CSV)