The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of this paper is to introduce the theory of Abelian integrals for holomorphic foliations in a complex manifold of dimension two. We will show the importance of Picard-Lefschetz theory and the classification of relatively exact 1-forms in this theory. As an application we identify some irreducible components of the space of holomorphic foliations of a fixed degree and with a center singularity in the projective space of dimension two. Also we calculate higher Melnikov functions under some...
In the present text we give a geometric interpretation of quasi-modular forms using moduli of elliptic curves with marked elements in their de Rham cohomologies. In this way differential equations of modular and quasi-modular forms are interpreted as vector fields on such moduli spaces and they can be calculated from the Gauss-Manin connection of the corresponding universal family of elliptic curves. For the full modular group such a differential equation is calculated and it turns out to be the...
In this article we give an algorithm which produces a basis of the -th de Rham cohomology of the affine smooth hypersurface compatible with the mixed Hodge structure, where is a polynomial in variables and satisfies a certain regularity condition at infinity (and hence has isolated singularities). As an application we show that the notion of a Hodge cycle in regular fibers of is given in terms of the vanishing of integrals of certain polynomial -forms in over topological -cycles on...
Download Results (CSV)