The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
For a finite group , the intersection graph of which is denoted by is an undirected graph such that its vertices are all nontrivial proper subgroups of and two distinct vertices and are adjacent when . In this paper we classify all finite groups whose intersection graphs are regular. Also, we find some results on the intersection graphs of simple groups and finally we study the structure of .
For a finite group , , the intersection graph of , is a simple graph whose vertices are all nontrivial proper subgroups of and two distinct vertices and are adjacent when . In this paper, we classify all finite nonsimple groups whose intersection graphs have a leaf and also we discuss the characterizability of them using their intersection graphs.
Download Results (CSV)