Hilbert's inequality and the large sieve Hugh MONTGOMERY Seminaire de Théorie des Nombres de Bordeaux
Corrélations dans l'ensemble des zéros de la fonction zêta Hugh MONTGOMERY Seminaire de Théorie des Nombres de Bordeaux
Large deviations of sums of independent random variables Hugh Montgomery; Andrew Odlyzko — 1988 Acta Arithmetica
Extreme values of the Riemann zeta function. Hugh L. Montgomery — 1977 Commentarii mathematici Helvetici
A note on rearrangements of Fourier coefficients Hugh L. Montgomery — 1976 Annales de l'institut Fourier Let f ( x ) ∼ Σ a n e 2 π i n x , f * ( x ) ∼ ∑ n = 0 ∞ a * n cos 2 π n x , where the a * n are the numbers | a n | rearranged so that a n * ↘ 0 . Then for any convex increasing ψ , ∥ ψ ( | f | 2 ∥ 1 ≤ ∥ ψ ( 20 | f * | 2 ∥ 1 . The special case ψ ( t ) = t q / 2 , q ≥ 2 , gives ∥ f ∥ q ≤ 5 ∥ f * ∥ q an equivalent of Littlewood.
Real Quadratic Fields with Large Class Number. Hugh L. Montgomery; Peter J. Weinberger — 1977 Mathematische Annalen
Estimation Optimale de sommes Exponentielles Harald Niederreiter; Hugh L. Montgomery — 1977 Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Geometric properties of the zeta function Hugh L. Montgomery; John G. Thompson — 2012 Acta Arithmetica