A note on rearrangements of Fourier coefficients
Annales de l'institut Fourier (1976)
- Volume: 26, Issue: 2, page 29-34
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMontgomery, Hugh L.. "A note on rearrangements of Fourier coefficients." Annales de l'institut Fourier 26.2 (1976): 29-34. <http://eudml.org/doc/74283>.
@article{Montgomery1976,
abstract = {Let $f(x)\sim \Sigma a_ne^\{2\pi inx\},f*(x)\sim \sum ^\infty _\{n=0\}a*_n\,\{\rm cos\}\, 2\pi nx$, where the $a*_n$ are the numbers $\vert a_n\vert $ rearranged so that $a^*_n\searrow 0$. Then for any convex increasing $\psi $, $\Vert \psi (\vert f\vert ^2\Vert _1 \le \Vert \psi (20\vert f*\vert ^2\Vert _1$. The special case $\psi (t)=t^\{q/2\}$, $q\ge 2$, gives $\Vert f\Vert _q\le 5\Vert f*\Vert _q$ an equivalent of Littlewood.},
author = {Montgomery, Hugh L.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {29-34},
publisher = {Association des Annales de l'Institut Fourier},
title = {A note on rearrangements of Fourier coefficients},
url = {http://eudml.org/doc/74283},
volume = {26},
year = {1976},
}
TY - JOUR
AU - Montgomery, Hugh L.
TI - A note on rearrangements of Fourier coefficients
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 2
SP - 29
EP - 34
AB - Let $f(x)\sim \Sigma a_ne^{2\pi inx},f*(x)\sim \sum ^\infty _{n=0}a*_n\,{\rm cos}\, 2\pi nx$, where the $a*_n$ are the numbers $\vert a_n\vert $ rearranged so that $a^*_n\searrow 0$. Then for any convex increasing $\psi $, $\Vert \psi (\vert f\vert ^2\Vert _1 \le \Vert \psi (20\vert f*\vert ^2\Vert _1$. The special case $\psi (t)=t^{q/2}$, $q\ge 2$, gives $\Vert f\Vert _q\le 5\Vert f*\Vert _q$ an equivalent of Littlewood.
LA - eng
UR - http://eudml.org/doc/74283
ER -
References
top- [1] G. A. BACHELIS, On the upper and lower majorant properties of Lp(G), Quart. J. Math. (Oxford), (2), 24 (1973), 119-128. Zbl0268.43003MR47 #9172
- [2] A. BAERNSTEIN, II, Integral means, univalent functions and circular symmetrizations, Acta Math., 133 (1974), 139-169. Zbl0315.30021MR54 #5456
- [3] G. H. HARDY and J. E. LITTELWOOD, Notes on the theory of series (XIII) : Some new properties of Fourier constants, J. London Math. Soc., 6 (1931), 3-9. Zbl0001.13504JFM57.0315.01
- [4] G. H. HARDY and J. E. LITTELWOOD, A new proof of a theorem on rearrangements, J. London math. Soc., 23 (1949), 163-168. Zbl0034.04301MR10,448b
- [5] F. R. KEOGH, Some inequalities of Littlewood and a problem on rearrangements, J. London Math. Soc., 36 (1961), 362-376. Zbl0138.28702MR24 #A1565
- [6] J. E. LITTLEWOOD, On a theorem of Paley, J. London Math. Soc., 29 (1954), 387-395. Zbl0058.05502MR16,126e
- [7] J. E. LITTLEWOOD, On inequalities between f and f⋆, J. London Math. Soc., 35 (1960), 352-365. Zbl0099.05403MR24 #A799
- [8] H. L. MONTGOMERY, Topics in multiplicative number theory, Lecture Notes in Mathematics, Springer-Verlag, Vol. 227, (1971), 187 pp. Zbl0216.03501MR49 #2616
- [9] R. E. A. C. PALEY, Some theorems on orthogonal functions, Studia Math., 3 (1931), 226-238. Zbl0003.35201JFM57.0335.02
- [10] H. S. SHAPIRO, Majorant problems for Fourier coefficients, to appear. Zbl0302.42004
- [11] A. ZYGMUND, Trigonometric series, Second Edition, Cambridge University Press, 1968.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.