A note on rearrangements of Fourier coefficients

Hugh L. Montgomery

Annales de l'institut Fourier (1976)

  • Volume: 26, Issue: 2, page 29-34
  • ISSN: 0373-0956

Abstract

top
Let f ( x ) Σ a n e 2 π i n x , f * ( x ) n = 0 a * n cos 2 π n x , where the a * n are the numbers | a n | rearranged so that a n * 0 . Then for any convex increasing ψ , ψ ( | f | 2 1 ψ ( 20 | f * | 2 1 . The special case ψ ( t ) = t q / 2 , q 2 , gives f q 5 f * q an equivalent of Littlewood.

How to cite

top

Montgomery, Hugh L.. "A note on rearrangements of Fourier coefficients." Annales de l'institut Fourier 26.2 (1976): 29-34. <http://eudml.org/doc/74283>.

@article{Montgomery1976,
abstract = {Let $f(x)\sim \Sigma a_ne^\{2\pi inx\},f*(x)\sim \sum ^\infty _\{n=0\}a*_n\,\{\rm cos\}\, 2\pi nx$, where the $a*_n$ are the numbers $\vert a_n\vert $ rearranged so that $a^*_n\searrow 0$. Then for any convex increasing $\psi $, $\Vert \psi (\vert f\vert ^2\Vert _1 \le \Vert \psi (20\vert f*\vert ^2\Vert _1$. The special case $\psi (t)=t^\{q/2\}$, $q\ge 2$, gives $\Vert f\Vert _q\le 5\Vert f*\Vert _q$ an equivalent of Littlewood.},
author = {Montgomery, Hugh L.},
journal = {Annales de l'institut Fourier},
language = {eng},
number = {2},
pages = {29-34},
publisher = {Association des Annales de l'Institut Fourier},
title = {A note on rearrangements of Fourier coefficients},
url = {http://eudml.org/doc/74283},
volume = {26},
year = {1976},
}

TY - JOUR
AU - Montgomery, Hugh L.
TI - A note on rearrangements of Fourier coefficients
JO - Annales de l'institut Fourier
PY - 1976
PB - Association des Annales de l'Institut Fourier
VL - 26
IS - 2
SP - 29
EP - 34
AB - Let $f(x)\sim \Sigma a_ne^{2\pi inx},f*(x)\sim \sum ^\infty _{n=0}a*_n\,{\rm cos}\, 2\pi nx$, where the $a*_n$ are the numbers $\vert a_n\vert $ rearranged so that $a^*_n\searrow 0$. Then for any convex increasing $\psi $, $\Vert \psi (\vert f\vert ^2\Vert _1 \le \Vert \psi (20\vert f*\vert ^2\Vert _1$. The special case $\psi (t)=t^{q/2}$, $q\ge 2$, gives $\Vert f\Vert _q\le 5\Vert f*\Vert _q$ an equivalent of Littlewood.
LA - eng
UR - http://eudml.org/doc/74283
ER -

References

top
  1. [1] G. A. BACHELIS, On the upper and lower majorant properties of Lp(G), Quart. J. Math. (Oxford), (2), 24 (1973), 119-128. Zbl0268.43003MR47 #9172
  2. [2] A. BAERNSTEIN, II, Integral means, univalent functions and circular symmetrizations, Acta Math., 133 (1974), 139-169. Zbl0315.30021MR54 #5456
  3. [3] G. H. HARDY and J. E. LITTELWOOD, Notes on the theory of series (XIII) : Some new properties of Fourier constants, J. London Math. Soc., 6 (1931), 3-9. Zbl0001.13504JFM57.0315.01
  4. [4] G. H. HARDY and J. E. LITTELWOOD, A new proof of a theorem on rearrangements, J. London math. Soc., 23 (1949), 163-168. Zbl0034.04301MR10,448b
  5. [5] F. R. KEOGH, Some inequalities of Littlewood and a problem on rearrangements, J. London Math. Soc., 36 (1961), 362-376. Zbl0138.28702MR24 #A1565
  6. [6] J. E. LITTLEWOOD, On a theorem of Paley, J. London Math. Soc., 29 (1954), 387-395. Zbl0058.05502MR16,126e
  7. [7] J. E. LITTLEWOOD, On inequalities between f and f⋆, J. London Math. Soc., 35 (1960), 352-365. Zbl0099.05403MR24 #A799
  8. [8] H. L. MONTGOMERY, Topics in multiplicative number theory, Lecture Notes in Mathematics, Springer-Verlag, Vol. 227, (1971), 187 pp. Zbl0216.03501MR49 #2616
  9. [9] R. E. A. C. PALEY, Some theorems on orthogonal functions, Studia Math., 3 (1931), 226-238. Zbl0003.35201JFM57.0335.02
  10. [10] H. S. SHAPIRO, Majorant problems for Fourier coefficients, to appear. Zbl0302.42004
  11. [11] A. ZYGMUND, Trigonometric series, Second Edition, Cambridge University Press, 1968. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.