Let be a group, be the Stone-Čech compactification of endowed with the structure of a right topological semigroup and . Given any subset of and , we define the -companion of , and characterize the subsets with finite and discrete ultracompanions.
We prove that any topological group of a non-measurable cardinality is hereditarily paracompact and strongly σ-discrete as soon as it is submaximal. Consequently, such a group is zero-dimensional. Examples of uncountable maximal separable spaces are constructed in ZFC.
Download Results (CSV)