The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

A tutorial on conformal groups

Ian Porteous — 1996

Banach Center Publications

Our concern is with the group of conformal transformations of a finite-dimensional real quadratic space of signature (p,q), that is one that is isomorphic to p , q , the real vector space p + q , furnished with the quadratic form x ( 2 ) = x · x = - x 1 2 - x 2 2 - . . . - x p 2 + x p + 1 2 + . . . + x p + q 2 , and especially with a description of this group that involves Clifford algebras.

Some remarks on duality in S 3

Ian Porteous — 1999

Banach Center Publications

In this paper we review some of the concepts and results of V. I. Arnol’d [1] for curves in S 2 and extend them to curves and surfaces in S 3 .

Page 1

Download Results (CSV)