In this paper, we consider a regulation problem of an urban transportation network. From a given timetable, we aim to find a new schedule of multiple vehicles after the detection of a disturbance at a given time. The main objective is to find a solution maximizing the level of service for all passengers. This problem was intensively studied with evolutionary approaches and multi-agent techniques, but without identifying its type before. In this paper, we formulate the problem as a classical one...
This paper deals with the parallel-machine scheduling problem with the aim of minimizing
the total (weighted) tardiness under the assumption of different release dates. This
problem has been proven to be NP-hard. We introduce some new lower and upper bounds based
on different approaches. We propose a branch-and-bound algorithm to solve the weighted and
unweighted total tardiness. Computational experiments were performed on a large set of
instances...
This paper deals with the parallel-machine scheduling problem with the aim of minimizing
the total (weighted) tardiness under the assumption of different release dates. This
problem has been proven to be NP-hard. We introduce some new lower and upper bounds based
on different approaches. We propose a branch-and-bound algorithm to solve the weighted and
unweighted total tardiness. Computational experiments were performed on a large set of
instances...
Download Results (CSV)