Convolution operators on Kucera-type spaces for the Hankel transformation
Let be the Zemanian space of Hankel transformable functions, and let be its dual space. In this paper is shown to be nuclear, hence Schwartz, Montel and reflexive. The space , also introduced by Zemanian, is completely characterized as the set of multipliers of and of . Certain topologies are considered on , and continuity properties of the multiplication operation with respect to those topologies are discussed.
Page 1