Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Sensitivity analysis of a nonlinear obstacle plate problem

Isabel N. FigueiredoCarlos F. Leal — 2002

ESAIM: Control, Optimisation and Calculus of Variations

We analyse the sensitivity of the solution of a nonlinear obstacle plate problem, with respect to small perturbations of the middle plane of the plate. This analysis, which generalizes the results of [9, 10] for the linear case, is done by application of an abstract variational result [6], where the sensitivity of parameterized variational inequalities in Banach spaces, without uniqueness of solution, is quantified in terms of a generalized derivative, that is the proto-derivative. We prove that...

Sensitivity Analysis of a Nonlinear Obstacle Plate Problem

Isabel N. FigueiredoCarlos F. Leal — 2010

ESAIM: Control, Optimisation and Calculus of Variations

We analyse the sensitivity of the solution of a nonlinear obstacle plate problem, with respect to small perturbations of the middle plane of the plate. This analysis, which generalizes the results of [9,10] for the linear case, is done by application of an abstract variational result [6], where the sensitivity of parameterized variational inequalities in Banach spaces, without uniqueness of solution, is quantified in terms of a generalized derivative, that is the proto-derivative. We prove that...

Frictional contact of an anisotropic piezoelectric plate

Isabel N. FigueiredoGeorg Stadler — 2009

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to derive and study a new asymptotic model for the equilibrium state of a thin anisotropic piezoelectric plate in frictional contact with a rigid obstacle. In the asymptotic process, the thickness of the piezoelectric plate is driven to zero and the convergence of the unknowns is studied. This leads to two-dimensional Kirchhoff-Love plate equations, in which mechanical displacement and electric potential are partly decoupled. Based on this model numerical examples are presented...

Conical differentiability for bone remodeling contact rod models

Isabel N. FigueiredoCarlos F. LealCecília S. Pinto — 2005

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement...

Conical differentiability for bone remodeling contact rod models

Isabel N. FigueiredoCarlos F. LealCecília S. Pinto — 2010

ESAIM: Control, Optimisation and Calculus of Variations

We prove the conical differentiability of the solution to a bone remodeling contact rod model, for given data (applied loads and rigid obstacle), with respect to small perturbations of the cross section of the rod. The proof is based on the special structure of the model, composed of a variational inequality coupled with an ordinary differential equation with respect to time. This structure enables the verification of the two following fundamental results: the polyhedricity of a modified displacement constraint...

Page 1

Download Results (CSV)