Frictional contact of an anisotropic piezoelectric plate
Isabel N. Figueiredo; Georg Stadler
ESAIM: Control, Optimisation and Calculus of Variations (2009)
- Volume: 15, Issue: 1, page 149-172
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Bernadou and C. Haenel, Modelization and numerical approximation of piezoelectric thin shells. I. The continuous problems. Comput. Methods Appl. Mech. Engrg.192 (2003) 4003–4043.
- P. Bisegna, F. Lebon and F. Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in Contact mechanics (Praia da Consolação, 2001), Solid Mech. Appl., Kluwer Acad. Publ., Dordrecht (2002) 347–354.
- P.G. Ciarlet, Mathematical Elasticity, Vol. II: Theory of Plates, Studies in Mathematics and its Applications27. North-Holland Publishing Co., Amsterdam (1997).
- P.G. Ciarlet, Mathematical Elasticity. Vol. III: Theory of Shells, Studies in Mathematics and its Applications29. North-Holland Publishing Co., Amsterdam (2000).
- P.G. Ciarlet and P. Destuynder, Une justification d'un modèle non linéaire en théorie des plaques. C. R. Acad. Sci. Paris Sér. A-B287 (1978) A33–A36.
- P.G. Ciarlet and P. Destuynder, A justification of the two-dimensional linear plate model. J. Mécanique18 (1979) 315–344.
- C. Collard and B. Miara, Two-dimensional models for geometrically nonlinear thin piezoelectric shells. Asymptotic Anal.31 (2002) 113–151.
- L. Costa, I. Figueiredo, R. Leal, P. Oliveira and G. Stadler, Modeling and numerical study of actuator and sensor effects for a laminated piezoelectric plate. Comput. Struct.85 (2007) 385–403.
- G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Grundlehren der mathematischen Wissenschaften219. Springer-Verlag, Berlin (1976).
- I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics28. SIAM, Philadelphia (1999).
- I. Figueiredo and C. Leal, A piezoelectric anisotropic plate model. Asymptotic Anal.44 (2005) 327–346.
- I. Figueiredo and C. Leal, A generalized piezoelectric Bernoulli-Navier anisotropic rod model. J. Elasticity85 (2006) 85–106.
- R. Glowinski, Numerical Methods for Nonlinear Variational Inequalities. Springer-Verlag, New York (1984).
- J. Haslinger, M. Miettinen and P. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities, Nonconvex Optimization and its Applications35. Kluwer Academic Publishers, Dordrecht (1999).
- S. Hüeber, A. Matei and B.I. Wohlmuth, A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bull. Math. Soc. Sci. Math. Roumanie (N.S.)48 (2005) 209–232.
- S. Hüeber, G. Stadler and B. Wohlmuth, A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J. Sci. Comp.30 (2008) 572–596.
- T. Ikeda, Fundamentals of Piezoelectricity. Oxford University Press (1990).
- N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988).
- S. Klinkel and W. Wagner, A geometrically non-linear piezoelectric solid shell element based on a mixed multi-field variational formulation. Int. J. Numer. Meth. Engng.65 (2005) 349–382.
- A. Léger and B. Miara, Mathematical justification of the obstacle problem in the case of a shallow shell. J. Elasticity9 (2008) 241–257.
- J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Mathematics 323. Springer-Verlag, Berlin (1973).
- F. Maceri and P. Bisegna, The unilateral frictionless contact of a piezoelectric body with a rigid support. Math. Comput. Model.28 (1998) 19–28.
- G.A. Maugin and D. Attou, An asymptotic theory of thin piezoelectric plates. Quart. J. Mech. Appl. Math.43 (1990) 347–362.
- B. Miara, Justification of the asymptotic analysis of elastic plates. I. The linear case. Asymptotic Anal.9 (1994) 47–60.
- M. Rahmoune, A. Benjeddou and R. Ohayon, New thin piezoelectric plate models. J. Int. Mat. Sys. Struct.9 (1998) 1017–1029.
- A. Raoult and A. Sène, Modelling of piezoelectric plates including magnetic effects. Asymptotic Anal.34 (2003) 1–40.
- N. Sabu, Vibrations of thin piezoelectric flexural shells: Two-dimensional approximation. J. Elast.68 (2002) 145–165.
- A. Sene, Modelling of piezoelectric static thin plates. Asymptotic Anal.25 (2001) 1–20.
- R.C. Smith, Smart Material Systems: Model Development, Frontiers in Applied Mathematics32. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2005).
- M. Sofonea and El-H. Essoufi, A piezoelectric contact problem with slip dependent coefficient of friction. Math. Model. Anal.9 (2004) 229–242.
- M. Sofonea and El-H. Essoufi, Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv. Math. Sci. Appl.14 (2004) 613–631.
- L. Trabucho and J.M. Viaño, Mathematical modelling of rods, in Handbook of Numerical Analysis IV, P.G. Ciarlet and J.-L. Lions Eds., Elsevier, Amsterdam, North-Holland (1996) 487–974.
- T. Weller and C. Licht, Analyse asymptotique de plaques minces linéairement piézoélectriques. C. R. Math. Acad. Sci. Paris335 (2002) 309–314.