Frictional contact of an anisotropic piezoelectric plate

Isabel N. Figueiredo; Georg Stadler

ESAIM: Control, Optimisation and Calculus of Variations (2009)

  • Volume: 15, Issue: 1, page 149-172
  • ISSN: 1292-8119

Abstract

top
The purpose of this paper is to derive and study a new asymptotic model for the equilibrium state of a thin anisotropic piezoelectric plate in frictional contact with a rigid obstacle. In the asymptotic process, the thickness of the piezoelectric plate is driven to zero and the convergence of the unknowns is studied. This leads to two-dimensional Kirchhoff-Love plate equations, in which mechanical displacement and electric potential are partly decoupled. Based on this model numerical examples are presented that illustrate the mutual interaction between the mechanical displacement and the electric potential. We observe that, compared to purely elastic materials, piezoelectric bodies yield a significantly different contact behavior.

How to cite

top

Figueiredo, Isabel N., and Stadler, Georg. "Frictional contact of an anisotropic piezoelectric plate." ESAIM: Control, Optimisation and Calculus of Variations 15.1 (2009): 149-172. <http://eudml.org/doc/250573>.

@article{Figueiredo2009,
abstract = { The purpose of this paper is to derive and study a new asymptotic model for the equilibrium state of a thin anisotropic piezoelectric plate in frictional contact with a rigid obstacle. In the asymptotic process, the thickness of the piezoelectric plate is driven to zero and the convergence of the unknowns is studied. This leads to two-dimensional Kirchhoff-Love plate equations, in which mechanical displacement and electric potential are partly decoupled. Based on this model numerical examples are presented that illustrate the mutual interaction between the mechanical displacement and the electric potential. We observe that, compared to purely elastic materials, piezoelectric bodies yield a significantly different contact behavior. },
author = {Figueiredo, Isabel N., Stadler, Georg},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Contact; friction; asymptotic analysis; anisotropic material; piezoelectricity; plate; convergence; Kirchhoff-Love plate},
language = {eng},
month = {1},
number = {1},
pages = {149-172},
publisher = {EDP Sciences},
title = {Frictional contact of an anisotropic piezoelectric plate},
url = {http://eudml.org/doc/250573},
volume = {15},
year = {2009},
}

TY - JOUR
AU - Figueiredo, Isabel N.
AU - Stadler, Georg
TI - Frictional contact of an anisotropic piezoelectric plate
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2009/1//
PB - EDP Sciences
VL - 15
IS - 1
SP - 149
EP - 172
AB - The purpose of this paper is to derive and study a new asymptotic model for the equilibrium state of a thin anisotropic piezoelectric plate in frictional contact with a rigid obstacle. In the asymptotic process, the thickness of the piezoelectric plate is driven to zero and the convergence of the unknowns is studied. This leads to two-dimensional Kirchhoff-Love plate equations, in which mechanical displacement and electric potential are partly decoupled. Based on this model numerical examples are presented that illustrate the mutual interaction between the mechanical displacement and the electric potential. We observe that, compared to purely elastic materials, piezoelectric bodies yield a significantly different contact behavior.
LA - eng
KW - Contact; friction; asymptotic analysis; anisotropic material; piezoelectricity; plate; convergence; Kirchhoff-Love plate
UR - http://eudml.org/doc/250573
ER -

References

top
  1. M. Bernadou and C. Haenel, Modelization and numerical approximation of piezoelectric thin shells. I. The continuous problems. Comput. Methods Appl. Mech. Engrg.192 (2003) 4003–4043.  Zbl1052.74035
  2. P. Bisegna, F. Lebon and F. Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in Contact mechanics (Praia da Consolação, 2001), Solid Mech. Appl., Kluwer Acad. Publ., Dordrecht (2002) 347–354.  Zbl1053.74583
  3. P.G. Ciarlet, Mathematical Elasticity, Vol. II: Theory of Plates, Studies in Mathematics and its Applications27. North-Holland Publishing Co., Amsterdam (1997).  Zbl0888.73001
  4. P.G. Ciarlet, Mathematical Elasticity. Vol. III: Theory of Shells, Studies in Mathematics and its Applications29. North-Holland Publishing Co., Amsterdam (2000).  
  5. P.G. Ciarlet and P. Destuynder, Une justification d'un modèle non linéaire en théorie des plaques. C. R. Acad. Sci. Paris Sér. A-B287 (1978) A33–A36.  Zbl0382.73012
  6. P.G. Ciarlet and P. Destuynder, A justification of the two-dimensional linear plate model. J. Mécanique18 (1979) 315–344.  Zbl0415.73072
  7. C. Collard and B. Miara, Two-dimensional models for geometrically nonlinear thin piezoelectric shells. Asymptotic Anal.31 (2002) 113–151.  Zbl1045.74034
  8. L. Costa, I. Figueiredo, R. Leal, P. Oliveira and G. Stadler, Modeling and numerical study of actuator and sensor effects for a laminated piezoelectric plate. Comput. Struct.85 (2007) 385–403.  
  9. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Grundlehren der mathematischen Wissenschaften219. Springer-Verlag, Berlin (1976).  
  10. I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics in Applied Mathematics28. SIAM, Philadelphia (1999).  Zbl0939.49002
  11. I. Figueiredo and C. Leal, A piezoelectric anisotropic plate model. Asymptotic Anal.44 (2005) 327–346.  Zbl1086.35108
  12. I. Figueiredo and C. Leal, A generalized piezoelectric Bernoulli-Navier anisotropic rod model. J. Elasticity85 (2006) 85–106.  Zbl1104.74028
  13. R. Glowinski, Numerical Methods for Nonlinear Variational Inequalities. Springer-Verlag, New York (1984).  Zbl0536.65054
  14. J. Haslinger, M. Miettinen and P. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities, Nonconvex Optimization and its Applications35. Kluwer Academic Publishers, Dordrecht (1999).  Zbl0949.65069
  15. S. Hüeber, A. Matei and B.I. Wohlmuth, A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bull. Math. Soc. Sci. Math. Roumanie (N.S.)48 (2005) 209–232.  Zbl1105.74028
  16. S. Hüeber, G. Stadler and B. Wohlmuth, A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction. SIAM J. Sci. Comp.30 (2008) 572–596.  Zbl1158.74045
  17. T. Ikeda, Fundamentals of Piezoelectricity. Oxford University Press (1990).  
  18. N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM Studies in Applied Mathematics8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988).  Zbl0685.73002
  19. S. Klinkel and W. Wagner, A geometrically non-linear piezoelectric solid shell element based on a mixed multi-field variational formulation. Int. J. Numer. Meth. Engng.65 (2005) 349–382.  Zbl1146.74052
  20. A. Léger and B. Miara, Mathematical justification of the obstacle problem in the case of a shallow shell. J. Elasticity9 (2008) 241–257.  Zbl1133.74033
  21. J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Mathematics 323. Springer-Verlag, Berlin (1973).  
  22. F. Maceri and P. Bisegna, The unilateral frictionless contact of a piezoelectric body with a rigid support. Math. Comput. Model.28 (1998) 19–28.  Zbl1126.74392
  23. G.A. Maugin and D. Attou, An asymptotic theory of thin piezoelectric plates. Quart. J. Mech. Appl. Math.43 (1990) 347–362.  Zbl0704.73087
  24. B. Miara, Justification of the asymptotic analysis of elastic plates. I. The linear case. Asymptotic Anal.9 (1994) 47–60.  Zbl0806.73029
  25. M. Rahmoune, A. Benjeddou and R. Ohayon, New thin piezoelectric plate models. J. Int. Mat. Sys. Struct.9 (1998) 1017–1029.  
  26. A. Raoult and A. Sène, Modelling of piezoelectric plates including magnetic effects. Asymptotic Anal.34 (2003) 1–40.  Zbl1050.74029
  27. N. Sabu, Vibrations of thin piezoelectric flexural shells: Two-dimensional approximation. J. Elast.68 (2002) 145–165.  Zbl1046.74032
  28. A. Sene, Modelling of piezoelectric static thin plates. Asymptotic Anal.25 (2001) 1–20.  Zbl0995.74038
  29. R.C. Smith, Smart Material Systems: Model Development, Frontiers in Applied Mathematics32. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2005).  Zbl1086.74002
  30. M. Sofonea and El-H. Essoufi, A piezoelectric contact problem with slip dependent coefficient of friction. Math. Model. Anal.9 (2004) 229–242.  Zbl1092.74029
  31. M. Sofonea and El-H. Essoufi, Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv. Math. Sci. Appl.14 (2004) 613–631.  Zbl1078.74036
  32. L. Trabucho and J.M. Viaño, Mathematical modelling of rods, in Handbook of Numerical Analysis IV, P.G. Ciarlet and J.-L. Lions Eds., Elsevier, Amsterdam, North-Holland (1996) 487–974.  Zbl0873.73041
  33. T. Weller and C. Licht, Analyse asymptotique de plaques minces linéairement piézoélectriques. C. R. Math. Acad. Sci. Paris335 (2002) 309–314.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.