Dans un corps fini, toute série formelle algébrique en une indéterminée est la diagonale d'une fraction rationnelle en deux indéterminées (Furstenberg 67). Dans cet article, nous donnons une nouvelle preuve de ce résultat, par des méthodes purement combinatoires.
Among Sturmian words, some of them are morphic,
fixed point of a non-identical morphism on words.
Berstel and Séébold (1993) have shown that if a characteristic Sturmian word is morphic,
then it can be extended by the left with one or two letters
in such a way that it remains morphic and Sturmian.
Yasutomi (1997) has proved that these were the sole possible additions and
that, if we cut the first letters of such a word, it didn't remain morphic.
In this paper, we give an elementary and combinatorial...
Download Results (CSV)