The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Moduli of unipotent representations I: foundational topics

Ishai Dan-Cohen — 2012

Annales de l’institut Fourier

With this work and its sequel, , we initiate a study of the finite dimensional algebraic representations of a unipotent group over a field of characteristic zero from the modular point of view. Let G be such a group. The stack n ( G ) of all representations of dimension n is badly behaved. In this first installment, we introduce a nondegeneracy condition which cuts out a substack n nd ( G ) which is better behaved, and, in particular, admits a coarse algebraic space, which we denote by M n nd ( G ) . We also study the problem...

Page 1

Download Results (CSV)