Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Independent transversal domination in graphs

Ismail Sahul Hamid — 2012

Discussiones Mathematicae Graph Theory

A set S ⊆ V of vertices in a graph G = (V, E) is called a dominating set if every vertex in V-S is adjacent to a vertex in S. A dominating set which intersects every maximum independent set in G is called an independent transversal dominating set. The minimum cardinality of an independent transversal dominating set is called the independent transversal domination number of G and is denoted by γ i t ( G ) . In this paper we begin an investigation of this parameter.

Fractional global domination in graphs

Subramanian ArumugamKalimuthu KaruppasamyIsmail Sahul Hamid — 2010

Discussiones Mathematicae Graph Theory

Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, g ( N [ v ] ) = u N [ v ] g ( u ) 1 and g ( N ( v ) ¯ ) = u N ( v ) g ( u ) 1 . A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number γ f g ( G ) is defined as follows: γ f g ( G ) = min|g|:g is an MGDF of G where | g | = v V g ( v ) . In this paper we initiate a study of this parameter.

Page 1

Download Results (CSV)