The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A set S ⊆ V of vertices in a graph G = (V, E) is called a dominating set if every vertex in V-S is adjacent to a vertex in S. A dominating set which intersects every maximum independent set in G is called an independent transversal dominating set. The minimum cardinality of an independent transversal dominating set is called the independent transversal domination number of G and is denoted by . In this paper we begin an investigation of this parameter.
Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, and . A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number is defined as follows: = min|g|:g is an MGDF of G where . In this paper we initiate a study of this parameter.
Download Results (CSV)