The properties of iterative splitting with two bounded linear operators have been analyzed by Faragó et al. For more than two operators, iterative splitting can be defined in many different ways. A large class of the possible extensions to this case is presented in this paper and the order of accuracy of these methods are examined. A separate section is devoted to the discussion of two of these methods to illustrate how this class of possible methods can be classified with respect to the order of...
For the Maxwell equations in time-dependent media only finite difference schemes with time-dependent conductivity are known. In this paper we present a numerical scheme based on the Magnus expansion and operator splitting that can handle time-dependent permeability and permittivity too. We demonstrate our results with numerical tests.
Initial value problems for systems of ordinary differential equations (ODEs) are solved numerically by using a combination of (a) the θ-method, (b) the sequential splitting procedure and (c) Richardson Extrapolation. Stability results for the combined numerical method are proved. It is shown, by using numerical experiments, that if the combined numerical method is stable, then it behaves as a second-order method.
We solve a linear parabolic equation in , with the third nonhomogeneous boundary condition using the finite element method for discretization in space, and the -method for discretization in time. The convergence of both, the semidiscrete approximations and the fully discretized ones, is analysed. The proofs are based on a generalization of the idea of the elliptic projection. The rate of convergence is derived also for variable time step-sizes.
The Euler methods are the most popular, simplest and widely used methods for the solution of the Cauchy problem for the first order ODE. The simplest and usual generalization of these methods are the so called theta-methods (notated also as -methods), which are, in fact, the convex linear combination of the two basic variants of the Euler methods, namely of the explicit Euler method (EEM) and of the implicit Euler method (IEM). This family of the methods is well-known and it is introduced almost...
An implicit-explicit (IMEX) method is developed for the numerical solution of reaction-diffusion equations with pure Neumann boundary conditions. The corresponding method of lines scheme with finite differences is analyzed: explicit conditions are given for its convergence in the ‖·‖∞ norm. The results are applied to a model for determining the overpotential in a proton exchange membrane (PEM) fuel cell.
We investigate biological processes, particularly the propagation of malaria. Both the continuous and the numerical models on some fixed mesh should preserve the basic qualitative properties of the original phenomenon. Our main goal is to give the conditions for the discrete (numerical) models of the malaria phenomena under which they possess some given qualitative property, namely, to be between zero and one. The conditions which guarantee this requirement are related to the time-discretization...
In this work, we present and discuss continuous and discrete maximum/minimum principles for reaction-diffusion problems with the Neumann boundary condition solved by the finite element and finite difference methods.
Runge-Kutta methods are widely used in the solution of systems of ordinary differential equations. Richardson extrapolation is an efficient tool to enhance the accuracy of time integration schemes. In this paper we investigate the convergence of the combination of any explicit Runge-Kutta method with active Richardson extrapolation and show that the obtained numerical solution converges under rather natural conditions.
Multi-dimensional advection terms are an important part of many large-scale mathematical models which arise in different fields of science and engineering. After applying some kind of splitting, these terms can be handled separately from the remaining part of the mathematical model under consideration. It is important to treat the multi-dimensional advection in a sufficiently accurate manner. It is shown in this paper that high order of accuracy can be achieved when the well-known Crank-Nicolson...
Download Results (CSV)