Stone-Weierstrass theorem
It will be shown that the Stone-Weierstrass theorem for Clifford-valued functions is true for the case of even dimension. It remains valid for the odd dimension if we add a stability condition by principal automorphism.
It will be shown that the Stone-Weierstrass theorem for Clifford-valued functions is true for the case of even dimension. It remains valid for the odd dimension if we add a stability condition by principal automorphism.
2000 Mathematics Subject Classification: 30A05, 33E05, 30G30, 30G35, 33E20. Let R0,2m+1 be the Clifford algebra of the antieuclidean 2m+1 dimensional space. The elliptic Cliffordian functions may be generated by the z2m+2 function, analogous to the well-known Weierstrass z-function. The latter satisfies a Legendre equality. We prove a corresponding formula at the level of the monogenic function Dm z2m+2.
Page 1