Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On the superstability of generalized d’Alembert harmonic functions

Iz-iddine EL-Fassi — 2016

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

The aim of this paper is to study the superstability problem of the d’Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) f ( x + y + z ) + f ( x + y + σ ( z ) ) + f ( x + σ ( y ) + z ) + f ( σ ( x ) + y + z ) = 4 f ( x ) f ( y ) f ( z ) for all x, y, z ∈ G, where G is an abelian group and σ : G → G is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.

Page 1

Download Results (CSV)