The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Об одном из способов номографирования системы частного вида четырех уравнений

Ján Pidany — 1968

Aplikace matematiky

This paper derives the necessary and sufficient conditions such that the system of equations x 7 = f ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) , x 8 = g ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) , x 9 = h ( x 1 , x 2 , x 3 , x 4 , x 11 , x 12 ) , x 10 = l ( x 1 , x 2 , x 3 , x 4 , x 11 , x 12 ) can be transformed into the form A 1 , 2 + A 3 , 4 = A 7 , 8 - A 5 , 6 = A 9 , 10 - A 11 , 12 B 1 , 2 + B 3 = B 7 , 8 - B 5 = B 9 , 10 - B 11 . These equations can be constructed with the help of nomograms with oriented transparency.

O možnosti úpravy sústavy dvoch rovníc o siedmich premenných na tvar A 6 , 7 = A 1 , 2 + A 3 , 4 + A 3 , 5 , B 6 , 7 = B 1 , 2 , ktorý môžeme zostrojiť pomocou nomogramov s priesvitkou o dvoch stupňoch voľnosti

Ján Pidany — 1966

Aplikace matematiky

The paper derives the necessary and sufficient conditions under which the system of equations x 6 = f ( x 1 , x 2 , x 3 , x 4 , x 5 ) , x 7 = g ( x 1 , x 2 , x 3 , x 4 , x 5 ) can be transformed into the form A 6 , 7 = A 1 , 2 + A 3 , 4 + A 3 , 5 , B 6 , 7 = B 1 , 2 which can be constructed by help of nomogram with a transparent with two degrees of freedom.

O možnosti úpravy sústavy dvoch rovníc s ôsmimi neznámými na tvar A 7 , 8 = A 1 , 2 + A 3 , 4 + A 5 , 6 , B 7 , 8 = B 1 , 2 + B 3 + B 5 , ktorý môžeme zostrojiť pomocou nomogramov s priesvitkou o dvoch stupňoch voľnosti

Ján Pidany — 1967

Aplikace matematiky

This paper derives the necessary and sufficient conditions under which the system of equations x 7 = f ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) , x 8 = g ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) can be transformed into the form A 7 , 8 = A 1 , 2 + A 3 , 4 + A 5 , 6 , B 7 , 8 = B 1 , 2 + B 3 + B 5 ; this can be done with the help of nomograph with a oriented transparent.

Page 1

Download Results (CSV)