Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Об одном из способов номографирования системы частного вида четырех уравнений

Ján Pidany — 1968

Aplikace matematiky

This paper derives the necessary and sufficient conditions such that the system of equations x 7 = f ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) , x 8 = g ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) , x 9 = h ( x 1 , x 2 , x 3 , x 4 , x 11 , x 12 ) , x 10 = l ( x 1 , x 2 , x 3 , x 4 , x 11 , x 12 ) can be transformed into the form A 1 , 2 + A 3 , 4 = A 7 , 8 - A 5 , 6 = A 9 , 10 - A 11 , 12 B 1 , 2 + B 3 = B 7 , 8 - B 5 = B 9 , 10 - B 11 . These equations can be constructed with the help of nomograms with oriented transparency.

O možnosti úpravy sústavy dvoch rovníc o siedmich premenných na tvar A 6 , 7 = A 1 , 2 + A 3 , 4 + A 3 , 5 , B 6 , 7 = B 1 , 2 , ktorý môžeme zostrojiť pomocou nomogramov s priesvitkou o dvoch stupňoch voľnosti

Ján Pidany — 1966

Aplikace matematiky

The paper derives the necessary and sufficient conditions under which the system of equations x 6 = f ( x 1 , x 2 , x 3 , x 4 , x 5 ) , x 7 = g ( x 1 , x 2 , x 3 , x 4 , x 5 ) can be transformed into the form A 6 , 7 = A 1 , 2 + A 3 , 4 + A 3 , 5 , B 6 , 7 = B 1 , 2 which can be constructed by help of nomogram with a transparent with two degrees of freedom.

O možnosti úpravy sústavy dvoch rovníc s ôsmimi neznámými na tvar A 7 , 8 = A 1 , 2 + A 3 , 4 + A 5 , 6 , B 7 , 8 = B 1 , 2 + B 3 + B 5 , ktorý môžeme zostrojiť pomocou nomogramov s priesvitkou o dvoch stupňoch voľnosti

Ján Pidany — 1967

Aplikace matematiky

This paper derives the necessary and sufficient conditions under which the system of equations x 7 = f ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) , x 8 = g ( x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) can be transformed into the form A 7 , 8 = A 1 , 2 + A 3 , 4 + A 5 , 6 , B 7 , 8 = B 1 , 2 + B 3 + B 5 ; this can be done with the help of nomograph with a oriented transparent.

Page 1

Download Results (CSV)