An application of shift operators to ordered symmetric spaces
We study the action of elementary shift operators on spherical functions on ordered symmetric spaces of Cayley type, where denotes the multiplicity of the short roots and the rank of the symmetric space. For even we apply this to prove a Paley-Wiener theorem for the spherical Laplace transform defined on by a reduction to the rank 1 case. Finally we generalize our notions and results to type root systems.