An application of shift operators to ordered symmetric spaces
Nils Byrial Andersen[1]; Jérémie M. Unterberger[2]
- [1] University of New South Wales, School of Mathematics, Sydney NSW 2052 (Australie)
- [2] Université Henri Poincaré, Institut Élie Cartan, BP 239, 54506 Vandœuvre-lès-Nancy Cedex (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 1, page 275-288
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAndersen, Nils Byrial, and Unterberger, Jérémie M.. "An application of shift operators to ordered symmetric spaces." Annales de l’institut Fourier 52.1 (2002): 275-288. <http://eudml.org/doc/115977>.
@article{Andersen2002,
abstract = {We study the action of elementary shift operators on spherical functions on ordered
symmetric spaces $\{\mathcal \{M\}\}_\{m,n\}$ of Cayley type, where $m\in \{\mathbb \{N\}\}$ denotes the
multiplicity of the short roots and $n\in \{\mathbb \{N\}\}$ the rank of the symmetric space. For
$m$ even we apply this to prove a Paley-Wiener theorem for the spherical Laplace
transform defined on $\{\mathcal \{M\}\}_\{m,n\}$ by a reduction to the rank 1 case. Finally we
generalize our notions and results to $BC_n$ type root systems.},
affiliation = {University of New South Wales, School of Mathematics, Sydney NSW 2052 (Australie); Université Henri Poincaré, Institut Élie Cartan, BP 239, 54506 Vandœuvre-lès-Nancy Cedex (France)},
author = {Andersen, Nils Byrial, Unterberger, Jérémie M.},
journal = {Annales de l’institut Fourier},
keywords = {ordered symmetric spaces; spherical Laplace transform; shift operators; Cayley spaces; spaces of Cayley type; Paley-Wiener theorem; wave packets},
language = {eng},
number = {1},
pages = {275-288},
publisher = {Association des Annales de l'Institut Fourier},
title = {An application of shift operators to ordered symmetric spaces},
url = {http://eudml.org/doc/115977},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Andersen, Nils Byrial
AU - Unterberger, Jérémie M.
TI - An application of shift operators to ordered symmetric spaces
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 1
SP - 275
EP - 288
AB - We study the action of elementary shift operators on spherical functions on ordered
symmetric spaces ${\mathcal {M}}_{m,n}$ of Cayley type, where $m\in {\mathbb {N}}$ denotes the
multiplicity of the short roots and $n\in {\mathbb {N}}$ the rank of the symmetric space. For
$m$ even we apply this to prove a Paley-Wiener theorem for the spherical Laplace
transform defined on ${\mathcal {M}}_{m,n}$ by a reduction to the rank 1 case. Finally we
generalize our notions and results to $BC_n$ type root systems.
LA - eng
KW - ordered symmetric spaces; spherical Laplace transform; shift operators; Cayley spaces; spaces of Cayley type; Paley-Wiener theorem; wave packets
UR - http://eudml.org/doc/115977
ER -
References
top- N.B. Andersen, G. Ólafsson, Paley-Wiener Theorems for the Spherical Laplace transform on Causal Symmetric Spaces of rank 1, Proc. Amer. Math. Soc. 129 (2001), 173-179 Zbl0958.43004MR1695108
- N.B. Andersen, J. M. Unterberger, Harmonic Analysis on , J. Lie Theory 10 (2000), 311-322 Zbl0961.22011MR1774862
- J. Faraut, Fonctions sphériques sur un espace symétrique ordonné de type Cayley, Contemp. Math. 191 (1995), 41-55 Zbl0847.53039MR1365533
- J. Faraut, J. Hilgert, G. Ólafsson, Spherical functions on ordered symmetric spaces, Ann. Inst. Fourier 44 (1994), 927-966 Zbl0810.43003MR1303888
- G. Heckman, H. Schlichtkrull, Harmonic analysis and special functions on symmetric spaces, (1994), Academic Press Zbl0836.43001MR1313912
- G. Heckman, Dunkl Operators, Séminaire Bourbaki Vol. 1996/97 ; No 245 ; Exp. No 828, 4 (1997), 223-246 Zbl0916.33012
- S. Helgason, Groups and Geometric Analysis, (1984), Academic Press, Orlando Zbl0543.58001MR754767
- M. Mizony, Une transformation de Laplace-Jacobi, SIAM J. Math. Anal. 14 (1983), 987-1003 Zbl0519.44003MR711179
- G. Ólafsson, Symmetric spaces of Hermitian type, Differential Geom. Appl. 1 (1991), 195-233 Zbl0785.22021MR1244444
- G. Ólafsson, Spherical Functions and Spherical Laplace Transform on Ordered Symmetric Spaces, (1997)
- E.M. Opdam, Lectures on Dunkl Operators, (1998)
- N.R. Wallach, Real Reductive Groups I, Vol. 132 (1988), Academic Press Zbl0666.22002MR929683
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.